IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48445-4.html
   My bibliography  Save this article

Structural insights into drug transport by an aquaglyceroporin

Author

Listed:
  • Wanbiao Chen

    (Chinese Academy of Sciences)

  • Rongfeng Zou

    (Ltd. (XtalPi))

  • Yi Mei

    (Xuzhou Medical University
    Xuzhou Medical University
    Xuzhou Medical University)

  • Jiawei Li

    (Chinese Academy of Sciences
    Shenzhen Longhua District Central Hospital)

  • Yumi Xuan

    (Chinese Academy of Sciences)

  • Bing Cui

    (Chinese Academy of Sciences
    China Pharmaceutical University)

  • Junjie Zou

    (Ltd. (XtalPi))

  • Juncheng Wang

    (Shandong University)

  • Shaoquan Lin

    (Shenzhen Institute of Advanced Technology, Chinese Academy of Science)

  • Zhe Zhang

    (Xuzhou Medical University
    Xuzhou Medical University
    Xuzhou Medical University)

  • Chongyuan Wang

    (Chinese Academy of Sciences)

Abstract

Pentamidine and melarsoprol are primary drugs used to treat the lethal human sleeping sickness caused by the parasite Trypanosoma brucei. Cross-resistance to these two drugs has recently been linked to aquaglyceroporin 2 of the trypanosome (TbAQP2). TbAQP2 is the first member of the aquaporin family described as capable of drug transport; however, the underlying mechanism remains unclear. Here, we present cryo-electron microscopy structures of TbAQP2 bound to pentamidine or melarsoprol. Our structural studies, together with the molecular dynamic simulations, reveal the mechanisms shaping substrate specificity and drug permeation. Multiple amino acids in TbAQP2, near the extracellular entrance and inside the pore, create an expanded conducting tunnel, sterically and energetically allowing the permeation of pentamidine and melarsoprol. Our study elucidates the mechanism of drug transport by TbAQP2, providing valuable insights to inform the design of drugs against trypanosomiasis.

Suggested Citation

  • Wanbiao Chen & Rongfeng Zou & Yi Mei & Jiawei Li & Yumi Xuan & Bing Cui & Junjie Zou & Juncheng Wang & Shaoquan Lin & Zhe Zhang & Chongyuan Wang, 2024. "Structural insights into drug transport by an aquaglyceroporin," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48445-4
    DOI: 10.1038/s41467-024-48445-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48445-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48445-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuriy Kirichok & Grigory Krapivinsky & David E. Clapham, 2004. "The mitochondrial calcium uniporter is a highly selective ion channel," Nature, Nature, vol. 427(6972), pages 360-364, January.
    2. Kazuyoshi Murata & Kaoru Mitsuoka & Teruhisa Hirai & Thomas Walz & Peter Agre & J. Bernard Heymann & Andreas Engel & Yoshinori Fujiyoshi, 2000. "Structural determinants of water permeation through aquaporin-1," Nature, Nature, vol. 407(6804), pages 599-605, October.
    3. Sam Alsford & Sabine Eckert & Nicola Baker & Lucy Glover & Alejandro Sanchez-Flores & Ka Fai Leung & Daniel J. Turner & Mark C. Field & Matthew Berriman & David Horn, 2012. "High-throughput decoding of antitrypanosomal drug efficacy and resistance," Nature, Nature, vol. 482(7384), pages 232-236, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aditi Mukherjee & Zakir Hossain & Esteban Erben & Shuai Ma & Jun Yong Choi & Hee-Sook Kim, 2023. "Identification of a small-molecule inhibitor that selectively blocks DNA-binding by Trypanosoma brucei replication protein A1," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Guangli Liu & Bin Zhou & Jinwei Liu & Huazhang Zhao, 2020. "The Bionic Water Channel of Ultra-Short, High Affinity Carbon Nanotubes with High Water Permeability and Proton Selectivity," Sustainability, MDPI, vol. 13(1), pages 1-13, December.
    3. Yasunori Saitoh & Namiki Mitani-Ueno & Keisuke Saito & Kengo Matsuki & Sheng Huang & Lingli Yang & Naoki Yamaji & Hiroshi Ishikita & Jian-Ren Shen & Jian Feng Ma & Michihiro Suga, 2021. "Structural basis for high selectivity of a rice silicon channel Lsi1," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Lalita Saini & Siva Sankar Nemala & Aparna Rathi & Suvigya Kaushik & Gopinadhan Kalon, 2022. "Selective transport of water molecules through interlayer spaces in graphite," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Enrique Balderas & David R. Eberhardt & Sandra Lee & John M. Pleinis & Salah Sommakia & Anthony M. Balynas & Xue Yin & Mitchell C. Parker & Colin T. Maguire & Scott Cho & Marta W. Szulik & Anna Bakhti, 2022. "Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Zhenyu Yang & Chunyang Yu & Junjie Ding & Lihua Chen & Huiyu Liu & Yangzhi Ye & Pan Li & Jiaolong Chen & Kim Jiayi Wu & Qiang-Yu Zhu & Yu-Quan Zhao & Xiaoning Liu & Xiaodong Zhuang & Shaodong Zhang, 2021. "A class of organic cages featuring twin cavities," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Peng Huang & Raminta Venskutonytė & Rashmi B. Prasad & Hamidreza Ardalani & Sofia W. Maré & Xiao Fan & Ping Li & Peter Spégel & Nieng Yan & Pontus Gourdon & Isabella Artner & Karin Lindkvist-Petersso, 2023. "Cryo-EM structure supports a role of AQP7 as a junction protein," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Weier Bao & Ming Liu & Jiaqi Meng & Siyuan Liu & Shuang Wang & Rongrong Jia & Yugang Wang & Guanghui Ma & Wei Wei & Zhiyuan Tian, 2021. "MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    9. Jason N Bazil & Ranjan K Dash, 2011. "A Minimal Model for the Mitochondrial Rapid Mode of Ca2+ Uptake Mechanism," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-13, June.
    10. Si-Hua Liu & Jun-Hao Zhou & Chunrui Wu & Peng Zhang & Xingzhong Cao & Jian-Ke Sun, 2024. "Sub-8 nm networked cage nanofilm with tunable nanofluidic channels for adaptive sieving," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48445-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.