IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47082-1.html
   My bibliography  Save this article

Decoding early stress signaling waves in living plants using nanosensor multiplexing

Author

Listed:
  • Mervin Chun-Yi Ang

    (Singapore-MIT Alliance for Research and Technology)

  • Jolly Madathiparambil Saju

    (1 Research Link National University of Singapore)

  • Thomas K. Porter

    (Massachusetts Institute of Technology)

  • Sayyid Mohaideen

    (Singapore-MIT Alliance for Research and Technology)

  • Sreelatha Sarangapani

    (1 Research Link National University of Singapore)

  • Duc Thinh Khong

    (Singapore-MIT Alliance for Research and Technology)

  • Song Wang

    (Singapore-MIT Alliance for Research and Technology)

  • Jianqiao Cui

    (Massachusetts Institute of Technology)

  • Suh In Loh

    (Singapore-MIT Alliance for Research and Technology)

  • Gajendra Pratap Singh

    (Singapore-MIT Alliance for Research and Technology)

  • Nam-Hai Chua

    (Singapore-MIT Alliance for Research and Technology
    1 Research Link National University of Singapore)

  • Michael S. Strano

    (Singapore-MIT Alliance for Research and Technology
    Massachusetts Institute of Technology)

  • Rajani Sarojam

    (Singapore-MIT Alliance for Research and Technology
    1 Research Link National University of Singapore)

Abstract

Increased exposure to environmental stresses due to climate change have adversely affected plant growth and productivity. Upon stress, plants activate a signaling cascade, involving multiple molecules like H2O2, and plant hormones such as salicylic acid (SA) leading to resistance or stress adaptation. However, the temporal ordering and composition of the resulting cascade remains largely unknown. In this study we developed a nanosensor for SA and multiplexed it with H2O2 nanosensor for simultaneous monitoring of stress-induced H2O2 and SA signals when Brassica rapa subsp. Chinensis (Pak choi) plants were subjected to distinct stress treatments, namely light, heat, pathogen stress and mechanical wounding. Nanosensors reported distinct dynamics and temporal wave characteristics of H2O2 and SA generation for each stress. Based on these temporal insights, we have formulated a biochemical kinetic model that suggests the early H2O2 waveform encodes information specific to each stress type. These results demonstrate that sensor multiplexing can reveal stress signaling mechanisms in plants, aiding in developing climate-resilient crops and pre-symptomatic stress diagnoses.

Suggested Citation

  • Mervin Chun-Yi Ang & Jolly Madathiparambil Saju & Thomas K. Porter & Sayyid Mohaideen & Sreelatha Sarangapani & Duc Thinh Khong & Song Wang & Jianqiao Cui & Suh In Loh & Gajendra Pratap Singh & Nam-Ha, 2024. "Decoding early stress signaling waves in living plants using nanosensor multiplexing," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47082-1
    DOI: 10.1038/s41467-024-47082-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47082-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47082-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Feihua Wu & Yuan Chi & Zhonghao Jiang & Yuanyuan Xu & Ling Xie & Feifei Huang & Di Wan & Jun Ni & Fang Yuan & Xiaomei Wu & Yanyan Zhang & Li Wang & Rui Ye & Benjamin Byeon & Wenhua Wang & Shu Zhang & , 2020. "Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis," Nature, Nature, vol. 578(7796), pages 577-581, February.
    2. Minhang Yuan & Zeyu Jiang & Guozhi Bi & Kinya Nomura & Menghui Liu & Yiping Wang & Boying Cai & Jian-Min Zhou & Sheng Yang He & Xiu-Fang Xin, 2021. "Pattern-recognition receptors are required for NLR-mediated plant immunity," Nature, Nature, vol. 592(7852), pages 105-109, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gengshen Chen & Bao Zhang & Junqiang Ding & Hongze Wang & Ce Deng & Jiali Wang & Qianhui Yang & Qianyu Pi & Ruyang Zhang & Haoyu Zhai & Junfei Dong & Junshi Huang & Jiabao Hou & Junhua Wu & Jiamin Que, 2022. "Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Jiahui Liu & Xiaoyun Wu & Yue Fang & Ye Liu & Esther Oreofe Bello & Yong Li & Ruyi Xiong & Yinzi Li & Zheng Qing Fu & Aiming Wang & Xiaofei Cheng, 2023. "A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Shen Huang & Chunli Wang & Zixuan Ding & Yaqian Zhao & Jing Dai & Jia Li & Haining Huang & Tongkai Wang & Min Zhu & Mingfeng Feng & Yinghua Ji & Zhongkai Zhang & Xiaorong Tao, 2024. "A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Li Fan & Katja Fröhlich & Eric Melzer & Rory N. Pruitt & Isabell Albert & Lisha Zhang & Anna Joe & Chenlei Hua & Yanyue Song & Markus Albert & Sang-Tae Kim & Detlef Weigel & Cyril Zipfel & Eunyoung Ch, 2022. "Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Tuo Ji & Lihua Zheng & Jiale Wu & Mei Duan & Qianwen Liu & Peng Liu & Chen Shen & Jinling Liu & Qinyi Ye & Jiangqi Wen & Jiangli Dong & Tao Wang, 2023. "The thioesterase APT1 is a bidirectional-adjustment redox sensor," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47082-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.