IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45372-2.html
   My bibliography  Save this article

Self-assembled hydrated copper coordination compounds as ionic conductors for room temperature solid-state batteries

Author

Listed:
  • Xiao Zhan

    (Xiamen University, Xiamen)

  • Miao Li

    (Xiamen University, Xiamen)

  • Xiaolin Zhao

    (Chinese Academy of Sciences)

  • Yaning Wang

    (Chinese Academy of Sciences)

  • Sha Li

    (Xiamen University, Xiamen)

  • Weiwei Wang

    (Xiamen University, Xiamen)

  • Jiande Lin

    (Xiamen University, Xiamen)

  • Zi-Ang Nan

    (Xiamen University, Xiamen)

  • Jiawei Yan

    (Xiamen University, Xiamen)

  • Zhefei Sun

    (Xiamen University, Xiamen)

  • Haodong Liu

    (UC San Diego)

  • Fei Wang

    (Fudan University)

  • Jiayu Wan

    (Shanghai Jiaotong University)

  • Jianjun Liu

    (Chinese Academy of Sciences)

  • Qiaobao Zhang

    (Xiamen University, Xiamen
    Shenzhen Research Institute of Xiamen University)

  • Li Zhang

    (Xiamen University, Xiamen)

Abstract

As the core component of solid-state batteries, neither current inorganic solid-state electrolytes nor solid polymer electrolytes can simultaneously possess satisfactory ionic conductivity, electrode compatibility and processability. By incorporating efficient Li+ diffusion channels found in inorganic solid-state electrolytes and polar functional groups present in solid polymer electrolytes, it is conceivable to design inorganic-organic hybrid solid-state electrolytes to achieve true fusion and synergy in performance. Herein, we demonstrate that traditional metal coordination compounds can serve as exceptional Li+ ion conductors at room temperature through rational structural design. Specifically, we synthesize copper maleate hydrate nanoflakes via bottom-up self-assembly featuring highly-ordered 1D channels that are interconnected by Cu2+/Cu+ nodes and maleic acid ligands, alongside rich COO− groups and structural water within the channels. Benefiting from the combination of ion-hopping and coupling-dissociation mechanisms, Li+ ions can preferably transport through these channels rapidly. Thus, the Li+-implanted copper maleate hydrate solid-state electrolytes shows remarkable ionic conductivity (1.17 × 10−4 S cm−1 at room temperature), high Li+ transference number (0.77), and a 4.7 V-wide operating window. More impressively, Li+-implanted copper maleate hydrate solid-state electrolytes are demonstrated to have exceptional compatibility with both cathode and Li anode, enabling long-term stability of more than 800 cycles. This work brings new insight on exploring superior room-temperature ionic conductors based on metal coordination compounds.

Suggested Citation

  • Xiao Zhan & Miao Li & Xiaolin Zhao & Yaning Wang & Sha Li & Weiwei Wang & Jiande Lin & Zi-Ang Nan & Jiawei Yan & Zhefei Sun & Haodong Liu & Fei Wang & Jiayu Wan & Jianjun Liu & Qiaobao Zhang & Li Zhan, 2024. "Self-assembled hydrated copper coordination compounds as ionic conductors for room temperature solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45372-2
    DOI: 10.1038/s41467-024-45372-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45372-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45372-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Meiting Zhao & Kuo Yuan & Yun Wang & Guodong Li & Jun Guo & Lin Gu & Wenping Hu & Huijun Zhao & Zhiyong Tang, 2016. "Metal–organic frameworks as selectivity regulators for hydrogenation reactions," Nature, Nature, vol. 539(7627), pages 76-80, November.
    2. Yun Su & Xiaohui Rong & Ang Gao & Yuan Liu & Jianwei Li & Minglei Mao & Xingguo Qi & Guoliang Chai & Qinghua Zhang & Liumin Suo & Lin Gu & Hong Li & Xuejie Huang & Liquan Chen & Binyuan Liu & Yong-She, 2022. "Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Alasdair M. Christie & Scott J. Lilley & Edward Staunton & Yuri G. Andreev & Peter G. Bruce, 2005. "Increasing the conductivity of crystalline polymer electrolytes," Nature, Nature, vol. 433(7021), pages 50-53, January.
    4. Chunpeng Yang & Qisheng Wu & Weiqi Xie & Xin Zhang & Alexandra Brozena & Jin Zheng & Mounesha N. Garaga & Byung Hee Ko & Yimin Mao & Shuaiming He & Yue Gao & Pengbo Wang & Madhusudan Tyagi & Feng Jiao, 2021. "Copper-coordinated cellulose ion conductors for solid-state batteries," Nature, Nature, vol. 598(7882), pages 590-596, October.
    5. Songyan Bai & Xizheng Liu & Kai Zhu & Shichao Wu & Haoshen Zhou, 2016. "Metal–organic framework-based separator for lithium–sulfur batteries," Nature Energy, Nature, vol. 1(7), pages 1-6, July.
    6. Yong-Gun Lee & Satoshi Fujiki & Changhoon Jung & Naoki Suzuki & Nobuyoshi Yashiro & Ryo Omoda & Dong-Su Ko & Tomoyuki Shiratsuchi & Toshinori Sugimoto & Saebom Ryu & Jun Hwan Ku & Taku Watanabe & Youn, 2020. "High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes," Nature Energy, Nature, vol. 5(4), pages 299-308, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian Wu & Mandi Fang & Shizhe Jiao & Siyuan Li & Shichao Zhang & Zeyu Shen & Shulan Mao & Jiale Mao & Jiahui Zhang & Yuanzhong Tan & Kang Shen & Jiaxing Lv & Wei Hu & Yi He & Yingying Lu, 2023. "Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Kai Li & Jifeng Wang & Yuanyuan Song & Ying Wang, 2023. "Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Hangchao Wang & Yali Yang & Chuan Gao & Tao Chen & Jin Song & Yuxuan Zuo & Qiu Fang & Tonghuan Yang & Wukun Xiao & Kun Zhang & Xuefeng Wang & Dingguo Xia, 2024. "An entanglement association polymer electrolyte for Li-metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Shuting Luo & Zhenyu Wang & Xuelei Li & Xinyu Liu & Haidong Wang & Weigang Ma & Lianqi Zhang & Lingyun Zhu & Xing Zhang, 2021. "Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Chao Chen & Jiaming Zhang & Benrui Hu & Qianwen Liang & Xunhui Xiong, 2023. "Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Li Zhai & Sara T. Gebre & Bo Chen & Dan Xu & Junze Chen & Zijian Li & Yawei Liu & Hua Yang & Chongyi Ling & Yiyao Ge & Wei Zhai & Changsheng Chen & Lu Ma & Qinghua Zhang & Xuefei Li & Yujie Yan & Xiny, 2023. "Epitaxial growth of highly symmetrical branched noble metal-semiconductor heterostructures with efficient plasmon-induced hot-electron transfer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Xiansheng Zhang & Hongwei Yan & Chongzhi Xu & Xia Dong & Yu Wang & Aiping Fu & Hao Li & Jin Yong Lee & Sheng Zhang & Jiahua Ni & Min Gao & Jing Wang & Jinpeng Yu & Shuzhi Sam Ge & Ming Liang Jin & Lil, 2023. "Skin-like cryogel electronics from suppressed-freezing tuned polymer amorphization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Jine Wu & Chenyi Liao & Tianyu Li & Jing Zhou & Linjuan Zhang & Jian-Qiang Wang & Guohui Li & Xianfeng Li, 2023. "Metal-coordinated polybenzimidazole membranes with preferential K+ transport," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Sirong Li & Zijun Zhou & Zuoxiu Tie & Bing Wang & Meng Ye & Lei Du & Ran Cui & Wei Liu & Cuihong Wan & Quanyi Liu & Sheng Zhao & Quan Wang & Yihong Zhang & Shuo Zhang & Huigang Zhang & Yan Du & Hui We, 2022. "Data-informed discovery of hydrolytic nanozymes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Chuanhui Huang & Xinglong Shang & Xinyuan Zhou & Zhe Zhang & Xing Huang & Yang Lu & Mingchao Wang & Markus Löffler & Zhongquan Liao & Haoyuan Qi & Ute Kaiser & Dana Schwarz & Andreas Fery & Tie Wang &, 2023. "Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Chao Zhu & Till Fuchs & Stefan A. L. Weber & Felix. H. Richter & Gunnar Glasser & Franjo Weber & Hans-Jürgen Butt & Jürgen Janek & Rüdiger Berger, 2023. "Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Minchao Liu & Cheng Shang & Tiancong Zhao & Hongyue Yu & Yufang Kou & Zirui Lv & Mengmeng Hou & Fan Zhang & Qiaowei Li & Dongyuan Zhao & Xiaomin Li, 2023. "Site-specific anisotropic assembly of amorphous mesoporous subunits on crystalline metal–organic framework," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Yoon, Da Hye & Park, Yong Joon, 2022. "Effects of lithium bis(oxalato)borate-derived surface coating layers on the performances of high-Ni cathodes for all-solid-state batteries," Applied Energy, Elsevier, vol. 326(C).
    19. Yuzhao Liu & Xiangyu Meng & Zhiyu Wang & Jieshan Qiu, 2022. "Development of quasi-solid-state anode-free high-energy lithium sulfide-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Pushun Lu & Yu Xia & Guochen Sun & Dengxu Wu & Siyuan Wu & Wenlin Yan & Xiang Zhu & Jiaze Lu & Quanhai Niu & Shaochen Shi & Zhengju Sha & Liquan Chen & Hong Li & Fan Wu, 2023. "Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45372-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.