IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43783-1.html
   My bibliography  Save this article

Puckered and JNK signaling in pioneer neurons coordinates the motor activity of the Drosophila embryo

Author

Listed:
  • Katerina Karkali

    (Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12
    BSRC “Alexander Fleming”)

  • Samuel W. Vernon

    (University of Manchester, Manchester Academic Health Science Centre
    Brain Mind Institute, EPFL – Swiss Federal Institute of Technology)

  • Richard A. Baines

    (University of Manchester, Manchester Academic Health Science Centre)

  • George Panayotou

    (BSRC “Alexander Fleming”)

  • Enrique Martín-Blanco

    (Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12)

Abstract

Central nervous system organogenesis is a complex process that obeys precise architectural rules. The impact that nervous system architecture may have on its functionality remains, however, relatively unexplored. To clarify this problem, we analyze the development of the Drosophila embryonic Ventral Nerve Cord (VNC). VNC morphogenesis requires the tight control of Jun kinase (JNK) signaling in a subset of pioneer neurons, exerted in part via a negative feedback loop mediated by the dual specificity phosphatase Puckered. Here we show that the JNK pathway autonomously regulates neuronal electrophysiological properties without affecting synaptic vesicle transport. Manipulating JNK signaling activity in pioneer neurons during early embryogenesis directly influences their function as organizers of VNC architecture and, moreover, uncovers a role in the coordination of the embryonic motor circuitry that is required for hatching. Together, our data reveal critical links, mediated by the control of the JNK signaling cascade by Puckered, between the structural organization of the VNC and its functional optimization.

Suggested Citation

  • Katerina Karkali & Samuel W. Vernon & Richard A. Baines & George Panayotou & Enrique Martín-Blanco, 2023. "Puckered and JNK signaling in pioneer neurons coordinates the motor activity of the Drosophila embryo," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43783-1
    DOI: 10.1038/s41467-023-43783-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43783-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43783-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maximiliano L. Suster & Michael Bate, 2002. "Embryonic assembly of a central pattern generator without sensory input," Nature, Nature, vol. 416(6877), pages 174-178, March.
    2. Subhabrata Sanyal & David J. Sandstrom & Charles A. Hoeffer & Mani Ramaswami, 2002. "AP-1 functions upstream of CREB to control synaptic plasticity in Drosophila," Nature, Nature, vol. 416(6883), pages 870-874, April.
    3. Katerina Karkali & Timothy E. Saunders & George Panayotou & Enrique Martín-Blanco, 2023. "JNK signaling in pioneer neurons organizes ventral nerve cord architecture in Drosophila embryos," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Graeme W. Davis & Corey S. Goodman, 1998. "Synapse-specific control of synaptic efficacy at the terminals of a single neuron," Nature, Nature, vol. 392(6671), pages 82-86, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua M Mueller & Primoz Ravbar & Julie H Simpson & Jean M Carlson, 2019. "Drosophila melanogaster grooming possesses syntax with distinct rules at different temporal scales," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-25, June.
    2. Tiziano D’Albis & Richard Kempter, 2017. "A single-cell spiking model for the origin of grid-cell patterns," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-41, October.
    3. William H Barnett & Gennady S Cymbalyuk, 2014. "A Codimension-2 Bifurcation Controlling Endogenous Bursting Activity and Pulse-Triggered Responses of a Neuron Model," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-14, January.
    4. Shuang Qiu & Chengfeng Xiao & R Meldrum Robertson, 2016. "Pulsed Light Stimulation Increases Boundary Preference and Periodicity of Episodic Motor Activity in Drosophila melanogaster," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-16, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43783-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.