IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43658-5.html
   My bibliography  Save this article

Selective synthesis of tightly- and loosely-twisted metallomacrocycle isomers towards precise control of helicity inversion motion

Author

Listed:
  • Tomoki Nakajima

    (The University of Tokyo)

  • Shohei Tashiro

    (The University of Tokyo)

  • Masahiro Ehara

    (Institute for Molecular Science, Myodaiji)

  • Mitsuhiko Shionoya

    (The University of Tokyo)

Abstract

Molecular twist is a characteristic component of molecular machines. Selectively synthesising isomers with different modes of twisting and controlling their motion such as helicity inversion is an essential challenge for achieving more advanced molecular systems. Here we report a strategy to control the inversion kinetics: the kinetically selective synthesis of tightly- and loosely-twisted isomers of a trinuclear PdII-macrocycle and their markedly different molecular behaviours. The loosely-twisted isomers smoothly invert between (P)- and (M)-helicity at a rate of 3.31 s–1, while the helicity inversion of the tightly-twisted isomers is undetectable but rather relaxes to the loosely-twisted isomers. This critical difference between these two isomers is explained by the presence or absence of an absolute configuration inversion of the nitrogen atoms of the macrocyclic amine ligand. Strategies to control the helicity inversion and structural loosening motions by the mode of twisting offer future possibilities for the design of molecular machines.

Suggested Citation

  • Tomoki Nakajima & Shohei Tashiro & Masahiro Ehara & Mitsuhiko Shionoya, 2023. "Selective synthesis of tightly- and loosely-twisted metallomacrocycle isomers towards precise control of helicity inversion motion," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43658-5
    DOI: 10.1038/s41467-023-43658-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43658-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43658-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hitoshi Ube & Yoshihiro Yasuda & Hiroyasu Sato & Mitsuhiko Shionoya, 2017. "Metal-centred azaphosphatriptycene gear with a photo- and thermally driven mechanical switching function based on coordination isomerism," Nature Communications, Nature, vol. 8(1), pages 1-6, April.
    2. Xu-Qing Wang & Wei Wang & Wei-Jian Li & Li-Jun Chen & Rui Yao & Guang-Qiang Yin & Yu-Xuan Wang & Ying Zhang & Junlin Huang & Hongwei Tan & Yihua Yu & Xiaopeng Li & Lin Xu & Hai-Bo Yang, 2018. "Dual stimuli-responsive rotaxane-branched dendrimers with reversible dimension modulation," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    3. Nagatoshi Koumura & Robert W. J. Zijlstra & Richard A. van Delden & Nobuyuki Harada & Ben L. Feringa, 1999. "Light-driven monodirectional molecular rotor," Nature, Nature, vol. 401(6749), pages 152-155, September.
    4. Takahiro Muraoka & Kazushi Kinbara & Takuzo Aida, 2006. "Mechanical twisting of a guest by a photoresponsive host," Nature, Nature, vol. 440(7083), pages 512-515, March.
    5. David A. Leigh & Jenny K. Y. Wong & François Dehez & Francesco Zerbetto, 2003. "Unidirectional rotation in a mechanically interlocked molecular rotor," Nature, Nature, vol. 424(6945), pages 174-179, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaqi Liang & Shuai Lu & Yang Yang & Yun-Jia Shen & Jin-Ku Bai & Xin Sun & Xu-Lang Chen & Jie Cui & Ai-Jiao Guan & Jun-Feng Xiang & Xiaopeng Li & Heng Wang & Yu-Dong Yang & Han-Yuan Gong, 2023. "Thermally-induced atropisomerism promotes metal-organic cage construction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Palas Roy & Wesley R. Browne & Ben L. Feringa & Stephen R. Meech, 2023. "Ultrafast motion in a third generation photomolecular motor," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Jie Wang & Jun Gu & Jia-Yu Zou & Meng-Jie Zhang & Rui Shen & Zhiwen Ye & Ping-Xun Xu & Ying He, 2024. "Photocatalytic Z/E isomerization unlocking the stereodivergent construction of axially chiral alkene frameworks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Umberto Raucci & Hayley Weir & Christoph Bannwarth & David M. Sanchez & Todd J. Martínez, 2022. "Chiral photochemistry of achiral molecules," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Ryojun Toyoda & Nong V. Hoang & Kiana Gholamjani Moghaddam & Stefano Crespi & Daisy R. S. Pooler & Shirin Faraji & Maxim S. Pshenichnikov & Ben L. Feringa, 2022. "Synergistic interplay between photoisomerization and photoluminescence in a light-driven rotary molecular motor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. L. Pfeifer & S. Crespi & P. Meulen & J. Kemmink & R. M. Scheek & M. F. Hilbers & W. J. Buma & B. L. Feringa, 2022. "Controlling forward and backward rotary molecular motion on demand," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Bakalis, Evangelos, 2012. "Explicit propagators for a random walker and unidirectionality on linear chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3093-3101.
    8. Michael Filatov(Gulak) & Marco Paolino & Robin Pierron & Andrea Cappelli & Gianluca Giorgi & Jérémie Léonard & Miquel Huix-Rotllant & Nicolas Ferré & Xuchun Yang & Danil Kaliakin & Alejandro Blanco-Go, 2022. "Towards the engineering of a photon-only two-stroke rotary molecular motor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43658-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.