IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43345-5.html
   My bibliography  Save this article

The genomic epidemiology of shigellosis in South Africa

Author

Listed:
  • George E. Stenhouse

    (University of Liverpool)

  • Karen H. Keddy

    (2Independent Consultant)

  • Rebecca J. Bengtsson

    (University of Liverpool)

  • Neil Hall

    (Norwich Research Park)

  • Anthony M. Smith

    (National Institute for Communicable Diseases (NICD), Division of the National Health Laboratory Service (NHLS)
    University of Pretoria)

  • Juno Thomas

    (National Institute for Communicable Diseases (NICD), Division of the National Health Laboratory Service (NHLS))

  • Miren Iturriza-Gómara

    (University of Liverpool)

  • Kate S. Baker

    (University of Liverpool
    University of Cambridge)

Abstract

Shigellosis, a leading cause of diarrhoeal mortality and morbidity globally, predominantly affects children under five years of age living in low- and middle-income countries. While whole genome sequence analysis (WGSA) has been effectively used to further our understanding of shigellosis epidemiology, antimicrobial resistance, and transmission, it has been under-utilised in sub-Saharan Africa. In this study, we applied WGSA to large sub-sample of surveillance isolates from South Africa, collected from 2011 to 2015, focussing on Shigella flexneri 2a and Shigella sonnei. We find each serotype is epidemiologically distinct. The four identified S. flexneri 2a clusters having distinct geographical distributions, and antimicrobial resistance (AMR) and virulence profiles, while the four sub-Clades of S. sonnei varied in virulence plasmid retention. Our results support serotype specific lifestyles as a driver for epidemiological differences, show AMR is not required for epidemiological success in S. flexneri, and that the HIV epidemic may have promoted Shigella population expansion.

Suggested Citation

  • George E. Stenhouse & Karen H. Keddy & Rebecca J. Bengtsson & Neil Hall & Anthony M. Smith & Juno Thomas & Miren Iturriza-Gómara & Kate S. Baker, 2023. "The genomic epidemiology of shigellosis in South Africa," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43345-5
    DOI: 10.1038/s41467-023-43345-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43345-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43345-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shaofu Qiu & Kangkang Liu & Chaojie Yang & Ying Xiang & Kaiyuan Min & Kunpeng Zhu & Hongbo Liu & Xinying Du & Mingjuan Yang & Ligui Wang & Yong Sun & Haijian Zhou & Muti Mahe & Jiayong Zhao & Shijun L, 2022. "A Shigella sonnei clone with extensive drug resistance associated with waterborne outbreaks in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Jane Hawkey & Kalani Paranagama & Kate S. Baker & Rebecca J. Bengtsson & François-Xavier Weill & Nicholas R. Thomson & Stephen Baker & Louise Cerdeira & Zamin Iqbal & Martin Hunt & Danielle J. Ingle &, 2021. "Global population structure and genotyping framework for genomic surveillance of the major dysentery pathogen, Shigella sonnei," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Kate S. Baker & Timothy J. Dallman & Nigel Field & Tristan Childs & Holly Mitchell & Martin Day & François-Xavier Weill & Sophie Lefèvre & Mathieu Tourdjman & Gwenda Hughes & Claire Jenkins & Nicholas, 2018. "Horizontal antimicrobial resistance transfer drives epidemics of multiple Shigella species," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lewis C. E. Mason & David R. Greig & Lauren A. Cowley & Sally R. Partridge & Elena Martinez & Grace A. Blackwell & Charlotte E. Chong & P. Malaka Silva & Rebecca J. Bengtsson & Jenny L. Draper & Andre, 2023. "The evolution and international spread of extensively drug resistant Shigella sonnei," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Sophie Lefèvre & Elisabeth Njamkepo & Sarah Feldman & Corinne Ruckly & Isabelle Carle & Monique Lejay-Collin & Laëtitia Fabre & Iman Yassine & Lise Frézal & Maria Pardos de la Gandara & Arnaud Fontane, 2023. "Rapid emergence of extensively drug-resistant Shigella sonnei in France," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Iman Yassine & Sophie Lefèvre & Elisabeth E. Hansen & Corinne Ruckly & Isabelle Carle & Monique Lejay-Collin & Laëtitia Fabre & Rayane Rafei & Dominique Clermont & Maria Pardos Gandara & Fouad Dabbous, 2022. "Population structure analysis and laboratory monitoring of Shigella by core-genome multilocus sequence typing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Shaofu Qiu & Kangkang Liu & Chaojie Yang & Ying Xiang & Kaiyuan Min & Kunpeng Zhu & Hongbo Liu & Xinying Du & Mingjuan Yang & Ligui Wang & Yong Sun & Haijian Zhou & Muti Mahe & Jiayong Zhao & Shijun L, 2022. "A Shigella sonnei clone with extensive drug resistance associated with waterborne outbreaks in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Vincenzo Torraca & Myrsini Kaforou & Jayne Watson & Gina M Duggan & Hazel Guerrero-Gutierrez & Sina Krokowski & Michael Hollinshead & Thomas B Clarke & Rafal J Mostowy & Gillian S Tomlinson & Vanessa , 2019. "Shigella sonnei infection of zebrafish reveals that O-antigen mediates neutrophil tolerance and dysentery incidence," PLOS Pathogens, Public Library of Science, vol. 15(12), pages 1-26, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43345-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.