IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43271-6.html
   My bibliography  Save this article

Dopamine receptor activation regulates reward expectancy signals during cognitive control in primate prefrontal neurons

Author

Listed:
  • Torben Ott

    (University of Tübingen
    Humboldt-University of Berlin)

  • Anna Marlina Stein

    (University of Tübingen)

  • Andreas Nieder

    (University of Tübingen)

Abstract

Dopamine neurons respond to reward-predicting cues but also modulate information processing in the prefrontal cortex essential for cognitive control. Whether dopamine controls reward expectation signals in prefrontal cortex that motivate cognitive control is unknown. We trained two male macaques on a working memory task while varying the reward size earned for successful task completion. We recorded neurons in lateral prefrontal cortex while simultaneously stimulating dopamine D1 receptor (D1R) or D2 receptor (D2R) families using micro-iontophoresis. We show that many neurons predict reward size throughout the trial. D1R stimulation showed mixed effects following reward cues but decreased reward expectancy coding during the memory delay. By contrast, D2R stimulation increased reward expectancy coding in multiple task periods, including cueing and memory periods. Stimulation of either dopamine receptors increased the neurons’ selective responses to reward size upon reward delivery. The differential modulation of reward expectancy by dopamine receptors suggests that dopamine regulates reward expectancy necessary for successful cognitive control.

Suggested Citation

  • Torben Ott & Anna Marlina Stein & Andreas Nieder, 2023. "Dopamine receptor activation regulates reward expectancy signals during cognitive control in primate prefrontal neurons," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43271-6
    DOI: 10.1038/s41467-023-43271-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43271-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43271-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sean E. Cavanagh & John P. Towers & Joni D. Wallis & Laurence T. Hunt & Steven W. Kennerley, 2018. "Reconciling persistent and dynamic hypotheses of working memory coding in prefrontal cortex," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    2. Masayuki Matsumoto & Okihide Hikosaka, 2009. "Two types of dopamine neuron distinctly convey positive and negative motivational signals," Nature, Nature, vol. 459(7248), pages 837-841, June.
    3. Behrad Noudoost & Tirin Moore, 2011. "Control of visual cortical signals by prefrontal dopamine," Nature, Nature, vol. 474(7351), pages 372-375, June.
    4. Ben Engelhard & Joel Finkelstein & Julia Cox & Weston Fleming & Hee Jae Jang & Sharon Ornelas & Sue Ann Koay & Stephan Y. Thiberge & Nathaniel D. Daw & David W. Tank & Ilana B. Witten, 2019. "Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons," Nature, Nature, vol. 570(7762), pages 509-513, June.
    5. Jeremiah Y. Cohen & Sebastian Haesler & Linh Vong & Bradford B. Lowell & Naoshige Uchida, 2012. "Neuron-type-specific signals for reward and punishment in the ventral tegmental area," Nature, Nature, vol. 482(7383), pages 85-88, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huanyuan Zhou & KongFatt Wong-Lin & Da-Hui Wang, 2018. "Parallel Excitatory and Inhibitory Neural Circuit Pathways Underlie Reward-Based Phasic Neural Responses," Complexity, Hindawi, vol. 2018, pages 1-20, April.
    2. Hong Yu & Xinkuan Xiang & Zongming Chen & Xu Wang & Jiaqi Dai & Xinxin Wang & Pengcheng Huang & Zheng-dong Zhao & Wei L. Shen & Haohong Li, 2021. "Periaqueductal gray neurons encode the sequential motor program in hunting behavior of mice," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Colin W. Hoy & David R. Quiroga-Martinez & Eduardo Sandoval & David King-Stephens & Kenneth D. Laxer & Peter Weber & Jack J. Lin & Robert T. Knight, 2023. "Asymmetric coding of reward prediction errors in human insula and dorsomedial prefrontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Min Jung Kim & Daniel J. Gibson & Dan Hu & Tomoko Yoshida & Emily Hueske & Ayano Matsushima & Ara Mahar & Cynthia J. Schofield & Patlapa Sompolpong & Kathy T. Tran & Lin Tian & Ann M. Graybiel, 2024. "Dopamine release plateau and outcome signals in dorsal striatum contrast with classic reinforcement learning formulations," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    5. Allen P. F. Chen & Jeffrey M. Malgady & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Joshua L. Plotkin & Shaoyu Ge & Qiaojie Xiong, 2022. "Nigrostriatal dopamine pathway regulates auditory discrimination behavior," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Panna Hegedüs & Bálint Király & Dániel Schlingloff & Victoria Lyakhova & Anna Velencei & Írisz Szabó & Márton I. Mayer & Zsofia Zelenak & Gábor Nyiri & Balázs Hangya, 2024. "Parvalbumin-expressing basal forebrain neurons mediate learning from negative experience," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Wenqi Chen & Jiejunyi Liang & Qiyun Wu & Yunyun Han, 2024. "Anterior cingulate cortex provides the neural substrates for feedback-driven iteration of decision and value representation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Lucas Rudelt & Daniel González Marx & Michael Wibral & Viola Priesemann, 2021. "Embedding optimization reveals long-lasting history dependence in neural spiking activity," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-51, June.
    9. Terence C. Burnham & Jay Phelan, 2020. "Ordinaries," Journal of Bioeconomics, Springer, vol. 22(2), pages 63-76, July.
    10. Athina Tzovara & Christoph W Korn & Dominik R Bach, 2018. "Human Pavlovian fear conditioning conforms to probabilistic learning," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-21, August.
    11. Hiroyuki Kawai & Youcef Bouchekioua & Naoya Nishitani & Kazuhei Niitani & Shoma Izumi & Hinako Morishita & Chihiro Andoh & Yuma Nagai & Masashi Koda & Masako Hagiwara & Koji Toda & Hisashi Shirakawa &, 2022. "Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    12. Thore Apitz & Nico Bunzeck, 2014. "Early Effects of Reward Anticipation Are Modulated by Dopaminergic Stimulation," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-11, October.
    13. Jérémie Naudé & Matthieu X. B. Sarazin & Sarah Mondoloni & Bernadette Hannesse & Eléonore Vicq & Fabrice Amegandjin & Alexandre Mourot & Philippe Faure & Bruno Delord, 2024. "Dopamine builds and reveals reward-associated latent behavioral attractors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Dimitrije Marković & Andrea M F Reiter & Stefan J Kiebel, 2019. "Predicting change: Approximate inference under explicit representation of temporal structure in changing environments," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-31, January.
    15. Paul Leon Brown & Paul D Shepard, 2013. "Lesions of the Fasciculus Retroflexus Alter Footshock-Induced cFos Expression in the Mesopontine Rostromedial Tegmental Area of Rats," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
    16. David Florentino Montez & Finnegan J Calabro & Beatriz Luna, 2019. "Working memory improves developmentally as neural processes stabilize," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.
    17. Laurens Winkelmeier & Carla Filosa & Renée Hartig & Max Scheller & Markus Sack & Jonathan R. Reinwald & Robert Becker & David Wolf & Martin Fungisai Gerchen & Alexander Sartorius & Andreas Meyer-Linde, 2022. "Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    18. Peter R Murphy & Joachim Vandekerckhove & Sander Nieuwenhuis, 2014. "Pupil-Linked Arousal Determines Variability in Perceptual Decision Making," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-13, September.
    19. Zhewei Zhang & Yuji K. Takahashi & Marlian Montesinos-Cartegena & Thorsten Kahnt & Angela J. Langdon & Geoffrey Schoenbaum, 2024. "Expectancy-related changes in firing of dopamine neurons depend on hippocampus," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Rosalba Morese & Daniela Rabellino & Fabio Sambataro & Felice Perussia & Maria Consuelo Valentini & Bruno G Bara & Francesca M Bosco, 2016. "Group Membership Modulates the Neural Circuitry Underlying Third Party Punishment," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43271-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.