IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43194-2.html
   My bibliography  Save this article

Profiling stress-triggered RNA condensation with photocatalytic proximity labeling

Author

Listed:
  • Ziqi Ren

    (Peking University)

  • Wei Tang

    (Peking University)

  • Luxin Peng

    (Peking University)

  • Peng Zou

    (Peking University
    Peking University
    Chinese Institute for Brain Research (CIBR))

Abstract

Stress granules (SGs) are highly dynamic cytoplasmic membrane-less organelles that assemble when cells are challenged by stress. RNA molecules are sorted into SGs where they play important roles in maintaining the structural stability of SGs and regulating gene expression. Herein, we apply a proximity-dependent RNA labeling method, CAP-seq, to comprehensively investigate the content of SG-proximal transcriptome in live mammalian cells. CAP-seq captures 457 and 822 RNAs in arsenite- and sorbitol-induced SGs in HEK293T cells, respectively, revealing that SG enrichment is positively correlated with RNA length and AU content, but negatively correlated with translation efficiency. The high spatial specificity of CAP-seq dataset is validated by single-molecule FISH imaging. We further apply CAP-seq to map dynamic changes in SG-proximal transcriptome along the time course of granule assembly and disassembly processes. Our data portray a model of AU-rich and translationally repressed SG nanostructure that are memorized long after the removal of stress.

Suggested Citation

  • Ziqi Ren & Wei Tang & Luxin Peng & Peng Zou, 2023. "Profiling stress-triggered RNA condensation with photocatalytic proximity labeling," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43194-2
    DOI: 10.1038/s41467-023-43194-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43194-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43194-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yansheng Zhai & Xiaoyan Huang & Keren Zhang & Yuchen Huang & Yanlong Jiang & Jingwei Cui & Zhe Zhang & Cookson K. C. Chiu & Weiye Zhong & Gang Li, 2022. "Spatiotemporal-resolved protein networks profiling with photoactivation dependent proximity labeling," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Eric L. Nostrand & Peter Freese & Gabriel A. Pratt & Xiaofeng Wang & Xintao Wei & Rui Xiao & Steven M. Blue & Jia-Yu Chen & Neal A. L. Cody & Daniel Dominguez & Sara Olson & Balaji Sundararaman & Liju, 2020. "A large-scale binding and functional map of human RNA-binding proteins," Nature, Nature, vol. 583(7818), pages 711-719, July.
    3. Fu Zheng & Chenxin Yu & Xinyue Zhou & Peng Zou, 2023. "Publisher Correction: Genetically encoded photocatalytic protein labeling enables spatially-resolved profiling of intracellular proteome," Nature Communications, Nature, vol. 14(1), pages 1-1, December.
    4. Ryan J. Ries & Sara Zaccara & Pierre Klein & Anthony Olarerin-George & Sim Namkoong & Brian F. Pickering & Deepak P. Patil & Hojoong Kwak & Jun Hee Lee & Samie R. Jaffrey, 2019. "m6A enhances the phase separation potential of mRNA," Nature, Nature, vol. 571(7765), pages 424-428, July.
    5. Fu Zheng & Chenxin Yu & Xinyue Zhou & Peng Zou, 2023. "Genetically encoded photocatalytic protein labeling enables spatially-resolved profiling of intracellular proteome," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Zhu & Kerem Can Akkaya & Julia Ruta & Nanako Yokoyama & Cong Wang & Max Ruwolt & Diogo Borges Lima & Martin Lehmann & Fan Liu, 2024. "Cross-link assisted spatial proteomics to map sub-organelle proteomes and membrane protein topologies," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Haofan Sun & Bin Fu & Xiaohong Qian & Ping Xu & Weijie Qin, 2024. "Nuclear and cytoplasmic specific RNA binding proteome enrichment and its changes upon ferroptosis induction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Johanna Luige & Alexandros Armaos & Gian Gaetano Tartaglia & Ulf Andersson Vang Ørom, 2024. "Predicting nuclear G-quadruplex RNA-binding proteins with roles in transcription and phase separation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Florian Pernin & Qiao-Ling Cui & Abdulshakour Mohammadnia & Milton G. F. Fernandes & Jeffery A. Hall & Myriam Srour & Roy W. R. Dudley & Stephanie E. J. Zandee & Wendy Klement & Alexandre Prat & Hanna, 2024. "Regulation of stress granule formation in human oligodendrocytes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Zili Song & Shuang Zhou & Hongjiao Zhang & Nancy P. Keller & Berl R. Oakley & Xiao Liu & Wen-Bing Yin, 2023. "Fungal secondary metabolism is governed by an RNA-binding protein CsdA/RsdA complex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Wei Hu & Yangjun Wu & Qili Shi & Jingni Wu & Deping Kong & Xiaohua Wu & Xianghuo He & Teng Liu & Shengli Li, 2022. "Systematic characterization of cancer transcriptome at transcript resolution," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. David Wang & Mathieu Quesnel-Vallieres & San Jewell & Moein Elzubeir & Kristen Lynch & Andrei Thomas-Tikhonenko & Yoseph Barash, 2023. "A Bayesian model for unsupervised detection of RNA splicing based subtypes in cancers," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Haoran Zhu & Yuning Yang & Yunhe Wang & Fuzhou Wang & Yujian Huang & Yi Chang & Ka-chun Wong & Xiangtao Li, 2023. "Dynamic characterization and interpretation for protein-RNA interactions across diverse cellular conditions using HDRNet," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    9. Anthony Khong & Tyler Matheny & Thao Ngoc Huynh & Vincent Babl & Roy Parker, 2022. "Limited effects of m6A modification on mRNA partitioning into stress granules," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Jian Han & Omer An & Xi Ren & Yangyang Song & Sze Jing Tang & Haoqing Shen & Xinyu Ke & Vanessa Hui En Ng & Daryl Jin Tai Tay & Hui Qing Tan & Dennis Kappei & Henry Yang & Leilei Chen, 2022. "Multilayered control of splicing regulatory networks by DAP3 leads to widespread alternative splicing changes in cancer," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Hyun Jung Hwang & Tae Lim Park & Hyeong-In Kim & Yeonkyoung Park & Geunhee Kim & Chiyeol Song & Won-Ki Cho & Yoon Ki Kim, 2023. "YTHDF2 facilitates aggresome formation via UPF1 in an m6A-independent manner," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Xinzhi Li & Kaixin Ding & Xueying Li & Bingchuan Yuan & Yuqin Wang & Zhicheng Yao & Shuaikang Wang & He Huang & Bolin Xu & Liwei Xie & Tuo Deng & Xiao-wei Chen & Zheng Chen, 2022. "Deficiency of WTAP in hepatocytes induces lipoatrophy and non-alcoholic steatohepatitis (NASH)," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Elsa Zacco & Owen Kantelberg & Edoardo Milanetti & Alexandros Armaos & Francesco Paolo Panei & Jenna Gregory & Kiani Jeacock & David J. Clarke & Siddharthan Chandran & Giancarlo Ruocco & Stefano Gusti, 2022. "Probing TDP-43 condensation using an in silico designed aptamer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Charles Limouse & Owen K. Smith & David Jukam & Kelsey A. Fryer & William J. Greenleaf & Aaron F. Straight, 2023. "Global mapping of RNA-chromatin contacts reveals a proximity-dominated connectivity model for ncRNA-gene interactions," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    15. Aditya Kshirsagar & Svetlana Maslov Doroshev & Anna Gorelik & Tsviya Olender & Tamar Sapir & Daisuke Tsuboi & Irit Rosenhek-Goldian & Sergey Malitsky & Maxim Itkin & Amir Argoetti & Yael Mandel-Gutfre, 2023. "LIS1 RNA-binding orchestrates the mechanosensitive properties of embryonic stem cells in AGO2-dependent and independent ways," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    16. Hisakatsu Sone & Tae Jin Lee & Byung Rho Lee & Dan Heo & Sekyung Oh & Sang-Ho Kwon, 2023. "MicroRNA-mediated attenuation of branched-chain amino acid catabolism promotes ferroptosis in chronic kidney disease," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Florian Krach & Judith Stemick & Tom Boerstler & Alexander Weiss & Ioannis Lingos & Stephanie Reischl & Holger Meixner & Sonja Ploetz & Michaela Farrell & Ute Hehr & Zacharias Kohl & Beate Winner & Ju, 2022. "An alternative splicing modulator decreases mutant HTT and improves the molecular fingerprint in Huntington’s disease patient neurons," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Meng Xu & Dulmi Senanayaka & Rongwei Zhao & Tafadzwa Chigumira & Astha Tripathi & Jason Tones & Rachel M. Lackner & Anne R. Wondisford & Laurel N. Moneysmith & Alexander Hirschi & Sara Craig & Sahar A, 2024. "TERRA-LSD1 phase separation promotes R-loop formation for telomere maintenance in ALT cancer cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    19. Maya Ron & Igor Ulitsky, 2022. "Context-specific effects of sequence elements on subcellular localization of linear and circular RNAs," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Dongmei Wang & Tao Sun & Yuan Xia & Zhe Zhao & Xue Sheng & Shuying Li & Yuechan Ma & Mingying Li & Xiuhua Su & Fan Zhang & Peng Li & Daoxin Ma & Jingjing Ye & Fei Lu & Chunyan Ji, 2023. "Homodimer-mediated phosphorylation of C/EBPα-p42 S16 modulates acute myeloid leukaemia differentiation through liquid-liquid phase separation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43194-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.