IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42963-3.html
   My bibliography  Save this article

Determining zebrafish dorsal organizer size by a negative feedback loop between canonical/non-canonical Wnts and Tlr4/NFκB

Author

Listed:
  • Juqi Zou

    (Osaka University)

  • Satoshi Anai

    (Yuuai Medical Center)

  • Satoshi Ota

    (The University of Tokyo)

  • Shizuka Ishitani

    (Osaka University)

  • Masayuki Oginuma

    (Osaka University)

  • Tohru Ishitani

    (Osaka University
    Osaka University)

Abstract

In vertebrate embryos, the canonical Wnt ligand primes the formation of dorsal organizers that govern dorsal-ventral patterns by secreting BMP antagonists. In contrast, in Drosophila embryos, Toll-like receptor (Tlr)-mediated NFκB activation initiates dorsal-ventral patterning, wherein Wnt-mediated negative feedback regulation of Tlr/NFκB generates a BMP antagonist-secreting signalling centre to control the dorsal-ventral pattern. Although both Wnt and BMP antagonist are conserved among species, the involvement of Tlr/NFκB and feedback regulation in vertebrate organizer formation remains unclear. By imaging and genetic modification, we reveal that a negative feedback loop between canonical and non-canonical Wnts and Tlr4/NFκB determines the size of zebrafish organizer, and that Tlr/NFκB and Wnts switch initial cue and feedback mediator roles between Drosophila and zebrafish. Here, we show that canonical Wnt signalling stimulates the expression of the non-canonical Wnt5b ligand, activating the Tlr4 receptor to stimulate NFκB-mediated transcription of the Wnt antagonist frzb, restricting Wnt-dependent dorsal organizer formation.

Suggested Citation

  • Juqi Zou & Satoshi Anai & Satoshi Ota & Shizuka Ishitani & Masayuki Oginuma & Tohru Ishitani, 2023. "Determining zebrafish dorsal organizer size by a negative feedback loop between canonical/non-canonical Wnts and Tlr4/NFκB," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42963-3
    DOI: 10.1038/s41467-023-42963-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42963-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42963-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrea Rossi & Zacharias Kontarakis & Claudia Gerri & Hendrik Nolte & Soraya Hölper & Marcus Krüger & Didier Y. R. Stainier, 2015. "Genetic compensation induced by deleterious mutations but not gene knockdowns," Nature, Nature, vol. 524(7564), pages 230-233, August.
    2. François Lapraz & Emmanuel Haillot & Thierry Lepage, 2015. "Erratum: A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms," Nature Communications, Nature, vol. 6(1), pages 1-2, December.
    3. Zhipeng Ma & Peipei Zhu & Hui Shi & Liwei Guo & Qinghe Zhang & Yanan Chen & Shuming Chen & Zhe Zhang & Jinrong Peng & Jun Chen, 2019. "PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components," Nature, Nature, vol. 568(7751), pages 259-263, April.
    4. Michael D. Gordon & Marc S. Dionne & David S. Schneider & Roel Nusse, 2005. "WntD is a feedback inhibitor of Dorsal/NF-κB in Drosophila development and immunity," Nature, Nature, vol. 437(7059), pages 746-749, September.
    5. François Lapraz & Emmanuel Haillot & Thierry Lepage, 2015. "A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms," Nature Communications, Nature, vol. 6(1), pages 1-20, December.
    6. Jun Ninomiya-Tsuji & Kazuya Kishimoto & Atsushi Hiyama & Jun-ichiro Inoue & Zhaodan Cao & Kunihiro Matsumoto, 1999. "The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway," Nature, Nature, vol. 398(6724), pages 252-256, March.
    7. Mohamed A. El-Brolosy & Zacharias Kontarakis & Andrea Rossi & Carsten Kuenne & Stefan Günther & Nana Fukuda & Khrievono Kikhi & Giulia L. M. Boezio & Carter M. Takacs & Shih-Lei Lai & Ryuichi Fukuda &, 2019. "Genetic compensation triggered by mutant mRNA degradation," Nature, Nature, vol. 568(7751), pages 193-197, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federica Diofano & Karolina Weinmann & Isabelle Schneider & Kevin D Thiessen & Wolfgang Rottbauer & Steffen Just, 2020. "Genetic compensation prevents myopathy and heart failure in an in vivo model of Bag3 deficiency," PLOS Genetics, Public Library of Science, vol. 16(11), pages 1-24, November.
    2. Antonios Apostolopoulos & Naohiro Kawamoto & Siu Yu A. Chow & Hitomi Tsuiji & Yoshiho Ikeuchi & Yuichi Shichino & Shintaro Iwasaki, 2024. "dCas13-mediated translational repression for accurate gene silencing in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Yinan Yang & Huijing Zhou & Xiawei Huang & Chengfang Wu & Kewei Zheng & Jingrong Deng & Yonggang Zheng & Jiahui Wang & Xiaofeng Chi & Xianjue Ma & Huimin Pan & Rui Shen & Duojia Pan & Bo Liu, 2024. "Innate immune and proinflammatory signals activate the Hippo pathway via a Tak1-STRIPAK-Tao axis," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Anirban Roy & Ashok Kumar, 2022. "Supraphysiological activation of TAK1 promotes skeletal muscle growth and mitigates neurogenic atrophy," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Thomas Juan & Agatha Ribeiro da Silva & Bárbara Cardoso & SoEun Lim & Violette Charteau & Didier Y. R. Stainier, 2023. "Multiple pkd and piezo gene family members are required for atrioventricular valve formation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Meijiang Gao & Marina Veil & Marcus Rosenblatt & Aileen Julia Riesle & Anna Gebhard & Helge Hass & Lenka Buryanova & Lev Y. Yampolsky & Björn Grüning & Sergey V. Ulianov & Jens Timmer & Daria Onichtch, 2022. "Pluripotency factors determine gene expression repertoire at zygotic genome activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Paul W. Chrystal & Nils J. Lambacher & Lance P. Doucette & James Bellingham & Elena R. Schiff & Nicole C. L. Noel & Chunmei Li & Sofia Tsiropoulou & Geoffrey A. Casey & Yi Zhai & Nathan J. Nadolski & , 2022. "The inner junction protein CFAP20 functions in motile and non-motile cilia and is critical for vision," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    8. Luca Guglielmi & Claire Heliot & Sunil Kumar & Yuriy Alexandrov & Ilaria Gori & Foteini Papaleonidopoulou & Christopher Barrington & Philip East & Andrew D. Economou & Paul M. W. French & James McGint, 2021. "Smad4 controls signaling robustness and morphogenesis by differentially contributing to the Nodal and BMP pathways," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    9. Lior Fishman & Avani Modak & Gal Nechooshtan & Talya Razin & Florian Erhard & Aviv Regev & Jeffrey A. Farrell & Michal Rabani, 2024. "Cell-type-specific mRNA transcription and degradation kinetics in zebrafish embryogenesis from metabolically labeled single-cell RNA-seq," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    10. Johannes Benedum & Vedran Franke & Lisa-Marie Appel & Lena Walch & Melania Bruno & Rebecca Schneeweiss & Juliane Gruber & Helena Oberndorfer & Emma Frank & Xué Strobl & Anton Polyansky & Bojan Zagrovi, 2023. "The SPOC proteins DIDO3 and PHF3 co-regulate gene expression and neuronal differentiation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    11. Friederike L. Pennemann & Assel Mussabekova & Christian Urban & Alexey Stukalov & Line Lykke Andersen & Vincent Grass & Teresa Maria Lavacca & Cathleen Holze & Lila Oubraham & Yasmine Benamrouche & En, 2021. "Cross-species analysis of viral nucleic acid interacting proteins identifies TAOKs as innate immune regulators," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    12. Valentina Cigliola & Adam Shoffner & Nutishia Lee & Jianhong Ou & Trevor J. Gonzalez & Jiaul Hoque & Clayton J. Becker & Yanchao Han & Grace Shen & Timothy D. Faw & Muhammad M. Abd-El-Barr & Shyni Var, 2023. "Spinal cord repair is modulated by the neurogenic factor Hb-egf under direction of a regeneration-associated enhancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Ádám Sturm & Éva Saskői & Bernadette Hotzi & Anna Tarnóci & János Barna & Ferenc Bodnár & Himani Sharma & Tibor Kovács & Eszter Ari & Nóra Weinhardt & Csaba Kerepesi & András Perczel & Zoltán Ivics & , 2023. "Downregulation of transposable elements extends lifespan in Caenorhabditis elegans," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Katarzyna Niescierowicz & Leszek Pryszcz & Cristina Navarrete & Eugeniusz Tralle & Agata Sulej & Karim Abu Nahia & Marta Elżbieta Kasprzyk & Katarzyna Misztal & Abhishek Pateria & Adrianna Pakuła & Ma, 2022. "Adar-mediated A-to-I editing is required for embryonic patterning and innate immune response regulation in zebrafish," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42963-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.