IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28434-1.html
   My bibliography  Save this article

Pluripotency factors determine gene expression repertoire at zygotic genome activation

Author

Listed:
  • Meijiang Gao

    (University of Freiburg
    Signalling Research Centres BIOSS and CIBSS)

  • Marina Veil

    (University of Freiburg)

  • Marcus Rosenblatt

    (University of Freiburg)

  • Aileen Julia Riesle

    (University of Freiburg)

  • Anna Gebhard

    (University of Freiburg)

  • Helge Hass

    (University of Freiburg)

  • Lenka Buryanova

    (University of Freiburg)

  • Lev Y. Yampolsky

    (East Tennessee State University
    Basel University)

  • Björn Grüning

    (University of Freiburg
    University of Freiburg)

  • Sergey V. Ulianov

    (Russian Academy of Sciences
    M.V. Lomonosov Moscow State University)

  • Jens Timmer

    (Signalling Research Centres BIOSS and CIBSS
    University of Freiburg)

  • Daria Onichtchouk

    (University of Freiburg
    Signalling Research Centres BIOSS and CIBSS
    Koltzov Institute of Developmental Biology RAS)

Abstract

Awakening of zygotic transcription in animal embryos relies on maternal pioneer transcription factors. The interplay of global and specific functions of these proteins remains poorly understood. Here, we analyze chromatin accessibility and time-resolved transcription in single and double mutant zebrafish embryos lacking pluripotency factors Pou5f3 and Sox19b. We show that two factors modify chromatin in a largely independent manner. We distinguish four types of direct enhancers by differential requirements for Pou5f3 or Sox19b. We demonstrate that changes in chromatin accessibility of enhancers underlie the changes in zygotic expression repertoire in the double mutants. Pou5f3 or Sox19b promote chromatin accessibility of enhancers linked to the genes involved in gastrulation and ventral fate specification. The genes regulating mesendodermal and dorsal fates are primed for activation independently of Pou5f3 and Sox19b. Strikingly, simultaneous loss of Pou5f3 and Sox19b leads to premature expression of genes, involved in regulation of organogenesis and differentiation.

Suggested Citation

  • Meijiang Gao & Marina Veil & Marcus Rosenblatt & Aileen Julia Riesle & Anna Gebhard & Helge Hass & Lenka Buryanova & Lev Y. Yampolsky & Björn Grüning & Sergey V. Ulianov & Jens Timmer & Daria Onichtch, 2022. "Pluripotency factors determine gene expression repertoire at zygotic genome activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28434-1
    DOI: 10.1038/s41467-022-28434-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28434-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28434-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nadine L. Vastenhouw & Yong Zhang & Ian G. Woods & Farhad Imam & Aviv Regev & X. Shirley Liu & John Rinn & Alexander F. Schier, 2010. "Chromatin signature of embryonic pluripotency is established during genome activation," Nature, Nature, vol. 464(7290), pages 922-926, April.
    2. Vanja Haberle & Nan Li & Yavor Hadzhiev & Charles Plessy & Christopher Previti & Chirag Nepal & Jochen Gehrig & Xianjun Dong & Altuna Akalin & Ana Maria Suzuki & Wilfred F. J. van IJcken & Olivier Arm, 2014. "Two independent transcription initiation codes overlap on vertebrate core promoters," Nature, Nature, vol. 507(7492), pages 381-385, March.
    3. Mohamed A. El-Brolosy & Zacharias Kontarakis & Andrea Rossi & Carsten Kuenne & Stefan Günther & Nana Fukuda & Khrievono Kikhi & Giulia L. M. Boezio & Carter M. Takacs & Shih-Lei Lai & Ryuichi Fukuda &, 2019. "Genetic compensation triggered by mutant mRNA degradation," Nature, Nature, vol. 568(7751), pages 193-197, April.
    4. Noam Kaplan & Irene K. Moore & Yvonne Fondufe-Mittendorf & Andrea J. Gossett & Desiree Tillo & Yair Field & Emily M. LeProust & Timothy R. Hughes & Jason D. Lieb & Jonathan Widom & Eran Segal, 2009. "The DNA-encoded nucleosome organization of a eukaryotic genome," Nature, Nature, vol. 458(7236), pages 362-366, March.
    5. Miler T. Lee & Ashley R. Bonneau & Carter M. Takacs & Ariel A. Bazzini & Kate R. DiVito & Elizabeth S. Fleming & Antonio J. Giraldez, 2013. "Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition," Nature, Nature, vol. 503(7476), pages 360-364, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aileen Julia Riesle & Meijiang Gao & Marcus Rosenblatt & Jacques Hermes & Helge Hass & Anna Gebhard & Marina Veil & Björn Grüning & Jens Timmer & Daria Onichtchouk, 2023. "Activator-blocker model of transcriptional regulation by pioneer-like factors," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Lior Fishman & Avani Modak & Gal Nechooshtan & Talya Razin & Florian Erhard & Aviv Regev & Jeffrey A. Farrell & Michal Rabani, 2024. "Cell-type-specific mRNA transcription and degradation kinetics in zebrafish embryogenesis from metabolically labeled single-cell RNA-seq," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Jiankai Wei & Wei Zhang & An Jiang & Hongzhe Peng & Quanyong Zhang & Yuting Li & Jianqing Bi & Linting Wang & Penghui Liu & Jing Wang & Yonghang Ge & Liya Zhang & Haiyan Yu & Lei Li & Shi Wang & Liang, 2024. "Temporospatial hierarchy and allele-specific expression of zygotic genome activation revealed by distant interspecific urochordate hybrids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Antonios Apostolopoulos & Naohiro Kawamoto & Siu Yu A. Chow & Hitomi Tsuiji & Yoshiho Ikeuchi & Yuichi Shichino & Shintaro Iwasaki, 2024. "dCas13-mediated translational repression for accurate gene silencing in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Kate E. Stanley & Tatjana Jatsenko & Stefania Tuveri & Dhanya Sudhakaran & Lore Lannoo & Kristel Calsteren & Marie Borre & Ilse Parijs & Leen Coillie & Kris Bogaert & Rodrigo Almeida Toledo & Liesbeth, 2024. "Cell type signatures in cell-free DNA fragmentation profiles reveal disease biology," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. B. Kempisty & D. Bukowska & H. Piotrowska & P. Zawierucha & P. Sniadek & R. Walczak & J. Dziuban & P. Antosik & J. Jaskowski & K.P. Brussow & M. Nowicki & M. Zabel, 2011. "Selected molecular and microfluidic aspects of mammalian oocyte maturation-perspectives: a review," Veterinární medicína, Czech Academy of Agricultural Sciences, vol. 56(8), pages 367-378.
    7. Federica Diofano & Karolina Weinmann & Isabelle Schneider & Kevin D Thiessen & Wolfgang Rottbauer & Steffen Just, 2020. "Genetic compensation prevents myopathy and heart failure in an in vivo model of Bag3 deficiency," PLOS Genetics, Public Library of Science, vol. 16(11), pages 1-24, November.
    8. Chirag Nepal & Jesper B. Andersen, 2023. "Alternative promoters in CpG depleted regions are prevalently associated with epigenetic misregulation of liver cancer transcriptomes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Wolfram Möbius & Ulrich Gerland, 2010. "Quantitative Test of the Barrier Nucleosome Model for Statistical Positioning of Nucleosomes Up- and Downstream of Transcription Start Sites," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-11, August.
    10. Thomas Juan & Agatha Ribeiro da Silva & Bárbara Cardoso & SoEun Lim & Violette Charteau & Didier Y. R. Stainier, 2023. "Multiple pkd and piezo gene family members are required for atrioventricular valve formation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Saurabh J. Pradhan & Puli Chandramouli Reddy & Michael Smutny & Ankita Sharma & Keisuke Sako & Meghana S. Oak & Rini Shah & Mrinmoy Pal & Ojas Deshpande & Greg Dsilva & Yin Tang & Rakesh Mishra & Giri, 2021. "Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    12. Shifeng Xue & Thanh Thao Nguyen Ly & Raunak S. Vijayakar & Jingyi Chen & Joel Ng & Ajay S. Mathuru & Frederique Magdinier & Bruno Reversade, 2022. "HOX epimutations driven by maternal SMCHD1/LRIF1 haploinsufficiency trigger homeotic transformations in genetically wildtype offspring," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Luca Guglielmi & Claire Heliot & Sunil Kumar & Yuriy Alexandrov & Ilaria Gori & Foteini Papaleonidopoulou & Christopher Barrington & Philip East & Andrew D. Economou & Paul M. W. French & James McGint, 2021. "Smad4 controls signaling robustness and morphogenesis by differentially contributing to the Nodal and BMP pathways," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    14. Xiaoqing Nie & Qianhua Xu & Chengpeng Xu & Fengling Chen & Qizhi Wang & Dandan Qin & Rui Wang & Zheng Gao & Xukun Lu & Xinai Yang & Yu Wu & Chen Gu & Wei Xie & Lei Li, 2023. "Maternal TDP-43 interacts with RNA Pol II and regulates zygotic genome activation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Johannes Benedum & Vedran Franke & Lisa-Marie Appel & Lena Walch & Melania Bruno & Rebecca Schneeweiss & Juliane Gruber & Helena Oberndorfer & Emma Frank & Xué Strobl & Anton Polyansky & Bojan Zagrovi, 2023. "The SPOC proteins DIDO3 and PHF3 co-regulate gene expression and neuronal differentiation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    16. Behrouz Eslami-Mossallam & Raoul D Schram & Marco Tompitak & John van Noort & Helmut Schiessel, 2016. "Multiplexing Genetic and Nucleosome Positioning Codes: A Computational Approach," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-14, June.
    17. Juqi Zou & Satoshi Anai & Satoshi Ota & Shizuka Ishitani & Masayuki Oginuma & Tohru Ishitani, 2023. "Determining zebrafish dorsal organizer size by a negative feedback loop between canonical/non-canonical Wnts and Tlr4/NFκB," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Ádám Sturm & Éva Saskői & Bernadette Hotzi & Anna Tarnóci & János Barna & Ferenc Bodnár & Himani Sharma & Tibor Kovács & Eszter Ari & Nóra Weinhardt & Csaba Kerepesi & András Perczel & Zoltán Ivics & , 2023. "Downregulation of transposable elements extends lifespan in Caenorhabditis elegans," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Xinru Zhang & Bohao Fang & Yi-Fei Huang, 2023. "Transcription factor binding sites are frequently under accelerated evolution in primates," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Vivekanandan Ramalingam & Xinyang Yu & Brian D. Slaughter & Jay R. Unruh & Kaelan J. Brennan & Anastasiia Onyshchenko & Jeffrey J. Lange & Malini Natarajan & Michael Buck & Julia Zeitlinger, 2023. "Lola-I is a promoter pioneer factor that establishes de novo Pol II pausing during development," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28434-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.