IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42633-4.html
   My bibliography  Save this article

Spontaneous shock waves in pulse-stimulated flocks of Quincke rollers

Author

Listed:
  • Bo Zhang

    (Argonne National Laboratory
    Nanjing University)

  • Andreas Glatz

    (Argonne National Laboratory
    Northern Illinois University)

  • Igor S. Aranson

    (Pennsylvania State University
    Pennsylvania State University
    Pennsylvania State University)

  • Alexey Snezhko

    (Argonne National Laboratory)

Abstract

Active matter demonstrates complex spatiotemporal self-organization not accessible at equilibrium and the emergence of collective behavior. Fluids comprised of microscopic Quincke rollers represent a popular realization of synthetic active matter. Temporal activity modulations, realized by modulated external electric fields, represent an effective tool to expand the variety of accessible dynamic states in active ensembles. Here, we report on the emergence of shockwave patterns composed of coherently moving particles energized by a pulsed electric field. The shockwaves emerge spontaneously and move faster than the average particle speed. Combining experiments, theory, and simulations, we demonstrate that the shockwaves originate from intermittent spontaneous vortex cores due to a vortex meandering instability. They occur when the rollers’ translational and rotational decoherence times, regulated by the electric pulse durations, become comparable. The phenomenon does not rely on the presence of confinement, and multiple shock waves continuously arise and vanish in the system.

Suggested Citation

  • Bo Zhang & Andreas Glatz & Igor S. Aranson & Alexey Snezhko, 2023. "Spontaneous shock waves in pulse-stimulated flocks of Quincke rollers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42633-4
    DOI: 10.1038/s41467-023-42633-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42633-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42633-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yutaka Sumino & Ken H. Nagai & Yuji Shitaka & Dan Tanaka & Kenichi Yoshikawa & Hugues Chaté & Kazuhiro Oiwa, 2012. "Large-scale vortex lattice emerging from collectively moving microtubules," Nature, Nature, vol. 483(7390), pages 448-452, March.
    2. Tim Sanchez & Daniel T. N. Chen & Stephen J. DeCamp & Michael Heymann & Zvonimir Dogic, 2012. "Spontaneous motion in hierarchically assembled active matter," Nature, Nature, vol. 491(7424), pages 431-434, November.
    3. Alexander Ziepke & Ivan Maryshev & Igor S. Aranson & Erwin Frey, 2022. "Multi-scale organization in communicating active matter," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Antoine Bricard & Jean-Baptiste Caussin & Debasish Das & Charles Savoie & Vijayakumar Chikkadi & Kyohei Shitara & Oleksandr Chepizhko & Fernando Peruani & David Saintillan & Denis Bartolo, 2015. "Emergent vortices in populations of colloidal rollers," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    5. Antoine Bricard & Jean-Baptiste Caussin & Nicolas Desreumaux & Olivier Dauchot & Denis Bartolo, 2013. "Emergence of macroscopic directed motion in populations of motile colloids," Nature, Nature, vol. 503(7474), pages 95-98, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bibi Najma & Minu Varghese & Lev Tsidilkovski & Linnea Lemma & Aparna Baskaran & Guillaume Duclos, 2022. "Competing instabilities reveal how to rationally design and control active crosslinked gels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Chung Wing Chan & Daihui Wu & Kaiyao Qiao & Kin Long Fong & Zhiyu Yang & Yilong Han & Rui Zhang, 2024. "Chiral active particles are sensitive reporters to environmental geometry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Alberto Dinelli & Jérémy O’Byrne & Agnese Curatolo & Yongfeng Zhao & Peter Sollich & Julien Tailleur, 2023. "Non-reciprocity across scales in active mixtures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. A. Tiribocchi & M. Durve & M. Lauricella & A. Montessori & D. Marenduzzo & S. Succi, 2023. "The crucial role of adhesion in the transmigration of active droplets through interstitial orifices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Yuan Shen & Ingo Dierking, 2022. "Electrically tunable collective motion of dissipative solitons in chiral nematic films," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Maxime Hubert & Stéphane Perrard & Nicolas Vandewalle & Matthieu Labousse, 2022. "Overload wave-memory induces amnesia of a self-propelled particle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Nishkantha Arulkumaran & Mervyn Singer & Stefan Howorka & Jonathan R. Burns, 2023. "Creating complex protocells and prototissues using simple DNA building blocks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Chepizhko, Oleksandr & Kulinskii, Vladimir, 2014. "The hydrodynamic description for the system of self-propelled particles: Ideal Viscek fluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 493-502.
    9. Federico Pratissoli & Andreagiovanni Reina & Yuri Kaszubowski Lopes & Carlo Pinciroli & Genki Miyauchi & Lorenzo Sabattini & Roderich Groß, 2023. "Coherent movement of error-prone individuals through mechanical coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Noman Hanif Barbhuiya & A. G. Yodh & Chandan K. Mishra, 2023. "Direction-dependent dynamics of colloidal particle pairs and the Stokes-Einstein relation in quasi-two-dimensional fluids," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. David T. Limmer & Chloe Y. Gao & Anthony R. Poggioli, 2021. "A large deviation theory perspective on nanoscale transport phenomena," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(7), pages 1-16, July.
    12. Salgado-García, R., 2022. "Active particles in reactive disordered media: How does adsorption affect diffusion?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    13. Helena Massana-Cid & Claudio Maggi & Giacomo Frangipane & Roberto Di Leonardo, 2022. "Rectification and confinement of photokinetic bacteria in an optical feedback loop," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Matthew S. E. Peterson & Aparna Baskaran & Michael F. Hagan, 2021. "Vesicle shape transformations driven by confined active filaments," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Tom Brandstätter & David B. Brückner & Yu Long Han & Ricard Alert & Ming Guo & Chase P. Broedersz, 2023. "Curvature induces active velocity waves in rotating spherical tissues," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Mallikarjun, Rahul & Pal, Arnab, 2023. "Chiral run-and-tumble walker: Transport and optimizing search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    17. Antonio Lamura & Adriano Tiribocchi, 2021. "Shearing Effects on the Phase Coarsening of Binary Mixtures Using the Active Model B," Mathematics, MDPI, vol. 9(23), pages 1-13, November.
    18. C.N., Sachin & Joy, Ashwin, 2022. "Entropy scaling laws in self propelled glass formers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    19. López-Alamilla, N.J. & Challis, K.J. & Deaker, A.G. & Jack, M.W., 2023. "The effect of futile chemical cycles on chemical-to-mechanical energy conversion in interacting motor protein systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    20. Stephen Williams & Raphaël Jeanneret & Idan Tuval & Marco Polin, 2022. "Confinement-induced accumulation and de-mixing of microscopic active-passive mixtures," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42633-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.