IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42082-z.html
   My bibliography  Save this article

Structural basis of dimerization of chemokine receptors CCR5 and CXCR4

Author

Listed:
  • Daniele Di Marino

    (Polytechnic University of Marche
    Mario Negri Institute for Pharmacological Research-IRCCS
    National Biodiversity Future Center (NBFC))

  • Paolo Conflitti

    (Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler Institute)

  • Stefano Motta

    (University of Milano-Bicocca)

  • Vittorio Limongelli

    (Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler Institute)

Abstract

G protein-coupled receptors (GPCRs) are prominent drug targets responsible for extracellular-to-intracellular signal transduction. GPCRs can form functional dimers that have been poorly characterized so far. Here, we show the dimerization mechanism of the chemokine receptors CCR5 and CXCR4 by means of an advanced free-energy technique named coarse-grained metadynamics. Our results reproduce binding events between the GPCRs occurring in the minute timescale, revealing a symmetric and an asymmetric dimeric structure for each of the three investigated systems, CCR5/CCR5, CXCR4/CXCR4, and CCR5/CXCR4. The transmembrane helices TM4-TM5 and TM6-TM7 are the preferred binding interfaces for CCR5 and CXCR4, respectively. The identified dimeric states differ in the access to the binding sites of the ligand and G protein, indicating that dimerization may represent a fine allosteric mechanism to regulate receptor activity. Our study offers structural basis for the design of ligands able to modulate the formation of CCR5 and CXCR4 dimers and in turn their activity, with therapeutic potential against HIV, cancer, and immune-inflammatory diseases.

Suggested Citation

  • Daniele Di Marino & Paolo Conflitti & Stefano Motta & Vittorio Limongelli, 2023. "Structural basis of dimerization of chemokine receptors CCR5 and CXCR4," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42082-z
    DOI: 10.1038/s41467-023-42082-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42082-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42082-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hui Zhang & Kun Chen & Qiuxiang Tan & Qiang Shao & Shuo Han & Chenhui Zhang & Cuiying Yi & Xiaojing Chu & Ya Zhu & Yechun Xu & Qiang Zhao & Beili Wu, 2021. "Structural basis for chemokine recognition and receptor activation of chemokine receptor CCR5," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Bryen A. Jordan & Lakshmi A. Devi, 1999. "G-protein-coupled receptor heterodimerization modulates receptor function," Nature, Nature, vol. 399(6737), pages 697-700, June.
    3. Junke Liu & Hengmin Tang & Chanjuan Xu & Shengnan Zhou & Xunying Zhu & Yuanyuan Li & Laurent Prézeau & Tao Xu & Jean-Philippe Pin & Philippe Rondard & Wei Ji & Jianfeng Liu, 2022. "Biased signaling due to oligomerization of the G protein-coupled platelet-activating factor receptor," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Byron Carpenter & Rony Nehmé & Tony Warne & Andrew G. W. Leslie & Christopher G. Tate, 2016. "Erratum: Structure of the adenosine A2A receptor bound to an engineered G protein," Nature, Nature, vol. 538(7626), pages 542-542, October.
    5. Justine S. Paradis & Xiang Feng & Brigitte Murat & Robert E. Jefferson & Badr Sokrat & Martyna Szpakowska & Mireille Hogue & Nick D. Bergkamp & Franziska M. Heydenreich & Martine J. Smit & Andy Chevig, 2022. "Computationally designed GPCR quaternary structures bias signaling pathway activation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Patricia M. Dijkman & Oliver K. Castell & Alan D. Goddard & Juan C. Munoz-Garcia & Chris Graaf & Mark I. Wallace & Anthony Watts, 2018. "Dynamic tuneable G protein-coupled receptor monomer-dimer populations," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    7. Byron Carpenter & Rony Nehmé & Tony Warne & Andrew G. W. Leslie & Christopher G. Tate, 2016. "Structure of the adenosine A2A receptor bound to an engineered G protein," Nature, Nature, vol. 536(7614), pages 104-107, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Zhou & Rinshi S. Kasai & Wakako Fujita & Taka A. Tsunoyama & Hiroyuki Neyama & Hiroshi Ueda & Tatsushi Yokoyama & Masayuki Sakamoto & Simone Pigolotti & Takahiro K. Fujiwara & Akihiro Kusumi, 2025. "Single-molecule characterization of opioid receptor heterodimers reveals soluble µ-δ dimer blocker peptide alleviates morphine tolerance," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    2. Peng Zhou & Taka A. Tsunoyama & Rinshi S. Kasai & Koichiro M. Hirosawa & Ziya Kalay & Amine Aladag & Takahiro K. Fujiwara & Tatsushi Yokoyama & Masayuki Sakamoto & Ryoji Kise & Masataka Yanagawa & Asu, 2025. "Single-molecule methods for characterizing receptor dimers reveal metastable opioid receptor homodimers that induce functional modulation," Nature Communications, Nature, vol. 16(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Zhou & Taka A. Tsunoyama & Rinshi S. Kasai & Koichiro M. Hirosawa & Ziya Kalay & Amine Aladag & Takahiro K. Fujiwara & Tatsushi Yokoyama & Masayuki Sakamoto & Ryoji Kise & Masataka Yanagawa & Asu, 2025. "Single-molecule methods for characterizing receptor dimers reveal metastable opioid receptor homodimers that induce functional modulation," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    2. Yitong Ma & Yijie Wang & Mengyuan Tang & Yuan Weng & Ying Chen & Yueming Xu & Shuxiao An & Yiran Wu & Suwen Zhao & Huanhuan Xu & Dali Li & Mingyao Liu & Weiqiang Lu & Heng Ru & Gaojie Song, 2025. "Cryo-EM structure of an activated GPR4–Gs signaling complex," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Robert E. Jefferson & Aurélien Oggier & Andreas Füglistaler & Nicolas Camviel & Mahdi Hijazi & Ana Rico Villarreal & Caroline Arber & Patrick Barth, 2023. "Computational design of dynamic receptor—peptide signaling complexes applied to chemotaxis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Dohyun Im & Jun-ichi Kishikawa & Yuki Shiimura & Hiromi Hisano & Akane Ito & Yoko Fujita-Fujiharu & Yukihiko Sugita & Takeshi Noda & Takayuki Kato & Hidetsugu Asada & So Iwata, 2023. "Structural insights into the agonists binding and receptor selectivity of human histamine H4 receptor," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Liudi Zhang & Jesse I. Mobbs & Felix M. Bennetts & Hariprasad Venugopal & Anh T. N. Nguyen & Arthur Christopoulos & Daan van der Es & Laura H. Heitman & Lauren T. May & Alisa Glukhova & David M. Thal, 2025. "Molecular basis of ligand binding and receptor activation at the human A3 adenosine receptor," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    6. Yang Yang & Hye Jin Kang & Ruogu Gao & Jingjing Wang & Gye Won Han & Jeffrey F. DiBerto & Lijie Wu & Jiahui Tong & Lu Qu & Yiran Wu & Ryan Pileski & Xuemei Li & Xuejun Cai Zhang & Suwen Zhao & Terry K, 2023. "Structural insights into the human niacin receptor HCA2-Gi signalling complex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Peng Zhou & Rinshi S. Kasai & Wakako Fujita & Taka A. Tsunoyama & Hiroyuki Neyama & Hiroshi Ueda & Tatsushi Yokoyama & Masayuki Sakamoto & Simone Pigolotti & Takahiro K. Fujiwara & Akihiro Kusumi, 2025. "Single-molecule characterization of opioid receptor heterodimers reveals soluble µ-δ dimer blocker peptide alleviates morphine tolerance," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    8. Hannah Glover & Torben Saßmannshausen & Quentin Bertrand & Matilde Trabuco & Chavdar Slavov & Arianna Bacchin & Fabio Andres & Yasushi Kondo & Robin Stipp & Maximilian Wranik & Georgii Khusainov & Mel, 2024. "Photoswitch dissociation from a G protein-coupled receptor resolved by time-resolved serial crystallography," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Xi Lin & Bo Chen & Yiran Wu & Yingqi Han & Ao Qi & Junyan Wang & Zhao Yang & Xiaohu Wei & Tingting Zhao & Lijie Wu & Xin Xie & Jinpeng Sun & Jie Zheng & Suwen Zhao & Fei Xu, 2023. "Cryo-EM structures of orphan GPR21 signaling complexes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Naveen Thakur & Arka P. Ray & Liam Sharp & Beining Jin & Alexander Duong & Niloofar Gopal Pour & Samuel Obeng & Anuradha V. Wijesekara & Zhan-Guo Gao & Christopher R. McCurdy & Kenneth A. Jacobson & E, 2023. "Anionic phospholipids control mechanisms of GPCR-G protein recognition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Iqra Sohail & Suli-Anne Laurin & Gunnar Kleinau & Vidicha Chunilal & Andrew Morton & Alfonso Brenlla & Zeynep Cansu Uretmen Kagiali & Marie-José Blouin & Javier A. Tello & Annette G. Beck-Sickinger & , 2025. "MRAP2 modifies the signaling and oligomerization state of the melanocortin-4 receptor," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    12. Wenli Zhao & Wenru Zhang & Mu Wang & Minmin Lu & Shutian Chen & Tingting Tang & Gisela Schnapp & Holger Wagner & Albert Brennauer & Cuiying Yi & Xiaojing Chu & Shuo Han & Beili Wu & Qiang Zhao, 2022. "Ligand recognition and activation of neuromedin U receptor 2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Katie L. Sharrocks & Francesca Fanelli & Yewei Liu & Annabelle J. Milner & Wu Yining & Bernadette Byrne & Aylin C. Hanyaloglu, 2025. "Stabilized D2R G protein-coupled receptor oligomers identify multi-state β-arrestin complexes," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    14. Yang Yue & Chanjuan Xu & Lijie Wu & Man Na & Kexin Xu & Xuan Chen & Yuxuan Song & Sichun Weng & Lu Xu & Fei Li & Xi Lin & Arthur Wang & Jianfeng Liu & Fei Xu, 2025. "Mechanistic insights into the versatile stoichiometry and biased signaling of the apelin receptor-arrestin complex," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    15. Xiaoying Xu & Pablo Jané & Vincent Taelman & Eduardo Jané & Rebecca A. Dumont & Yonathan Garama & Francisco Kim & María Val Gómez & Karim Gariani & Martin A. Walter, 2024. "The Theranostic Genome," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Yang Yue & Lier Liu & Lijie Wu & Chanjuan Xu & Man Na & Shenhui Liu & Yuxuan Liu & Fei Li & Junlin Liu & Songting Shi & Hui Lei & Minxuan Zhao & Tianjie Yang & Wei Ji & Arthur Wang & Michael A. Hanson, 2025. "Structural insights into the regulation of monomeric and dimeric apelin receptor," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    17. Youwen Zhuang & Lei Wang & Jia Guo & Dapeng Sun & Yue Wang & Weiyi Liu & H. Eric Xu & Cheng Zhang, 2022. "Molecular recognition of formylpeptides and diverse agonists by the formylpeptide receptors FPR1 and FPR2," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Dawei Sun & Yonglian Sun & Eric Janezic & Tricia Zhou & Matthew Johnson & Caleigh Azumaya & Sigrid Noreng & Cecilia Chiu & Akiko Seki & Teresita L. Arenzana & John M. Nicoludis & Yongchang Shi & Baome, 2023. "Structural basis of antibody inhibition and chemokine activation of the human CC chemokine receptor 8," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Jun Bae Park & Bibekananda Sahoo & Amita Rani Sahoo & Dokyun Kim & Hogyu David Seo & James Bowman & Mi-Jeong Kwak & Sophia Suh & Matthias Buck & Xinghong Dai & Jae U. Jung, 2025. "Structural basis for ligand promiscuity and high signaling activity of Kaposi’s Sarcoma-associated Herpesvirus-encoded GPCR," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    20. Yujia Huo & Yiwei Zhou & Li Lin & Fan Yang & Jiyong Meng & Feiteng He & Fengfan Zhang & Mengdan Song & Cangsong Shen & Yuxuan Liu & Philippe Rondard & Chanjuan Xu & X. Z. Shawn Xu & Jianfeng Liu, 2025. "GABA-independent activation of GABAB receptor by mechanical forces," Nature Communications, Nature, vol. 16(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42082-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.