IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64695-2.html
   My bibliography  Save this article

Single-molecule characterization of opioid receptor heterodimers reveals soluble µ-δ dimer blocker peptide alleviates morphine tolerance

Author

Listed:
  • Peng Zhou

    (Okinawa Institute of Science and Technology Graduate University)

  • Rinshi S. Kasai

    (National Cancer Center Research Institute
    Gifu University
    Kyoto University)

  • Wakako Fujita

    (Nagasaki University Graduate School of Biomedical Sciences
    Juntendo University)

  • Taka A. Tsunoyama

    (Okinawa Institute of Science and Technology Graduate University)

  • Hiroyuki Neyama

    (Kyoto University Graduate School of Medicine)

  • Hiroshi Ueda

    (Research Institute for Production Development
    Nei-Hu)

  • Tatsushi Yokoyama

    (Kyoto University)

  • Masayuki Sakamoto

    (Kyoto University)

  • Simone Pigolotti

    (Okinawa Institute of Science and Technology Graduate University)

  • Takahiro K. Fujiwara

    (Kyoto University)

  • Akihiro Kusumi

    (Okinawa Institute of Science and Technology Graduate University
    Kyoto University)

Abstract

Heterodimerization of opioid receptors (ORs), MOR, KOR, and DOR, is implied in their functional regulation and diversification, and thus its understanding is crucial for developing better analgesic treatments. However, our knowledge on OR heterodimerization/heterodimers remains limited. Here, using single-molecule imaging and functional analysis, we find that MOR, the main morphine receptor, repeatedly forms transient (≈250 ms) heterodimers with DOR every 1-10 seconds, but not with KOR, whereas DOR and KOR also form transient heterodimers. We obtain all the heterodimer-monomer equilibrium constants and rate constants with/without agonists. We identify the critical heterodimer binding sites in the extracellular domains, in addition to the less-specific transmembrane domains, and develop soluble peptide blockers for MOR-DOR and DOR-KOR heterodimerization, using amino-acid sequences mimicking the extracellular binding sites. With these peptide blockers, we dissect the monomer/dimer roles in OR internalization and signaling. The soluble MOR-DOR heterodimer blocker reduces the development of long-term morphine tolerance in mice.

Suggested Citation

  • Peng Zhou & Rinshi S. Kasai & Wakako Fujita & Taka A. Tsunoyama & Hiroyuki Neyama & Hiroshi Ueda & Tatsushi Yokoyama & Masayuki Sakamoto & Simone Pigolotti & Takahiro K. Fujiwara & Akihiro Kusumi, 2025. "Single-molecule characterization of opioid receptor heterodimers reveals soluble µ-δ dimer blocker peptide alleviates morphine tolerance," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64695-2
    DOI: 10.1038/s41467-025-64695-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64695-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64695-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marta Filizola & Lakshmi A. Devi, 2012. "How opioid drugs bind to receptors," Nature, Nature, vol. 485(7398), pages 314-317, May.
    2. Bryen A. Jordan & Lakshmi A. Devi, 1999. "G-protein-coupled receptor heterodimerization modulates receptor function," Nature, Nature, vol. 399(6737), pages 697-700, June.
    3. Aashish Manglik & Andrew C. Kruse & Tong Sun Kobilka & Foon Sun Thian & Jesper M. Mathiesen & Roger K. Sunahara & Leonardo Pardo & William I. Weis & Brian K. Kobilka & Sébastien Granier, 2012. "Crystal structure of the µ-opioid receptor bound to a morphinan antagonist," Nature, Nature, vol. 485(7398), pages 321-326, May.
    4. Daniele Di Marino & Paolo Conflitti & Stefano Motta & Vittorio Limongelli, 2023. "Structural basis of dimerization of chemokine receptors CCR5 and CXCR4," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Peng Zhou & Taka A. Tsunoyama & Rinshi S. Kasai & Koichiro M. Hirosawa & Ziya Kalay & Amine Aladag & Takahiro K. Fujiwara & Tatsushi Yokoyama & Masayuki Sakamoto & Ryoji Kise & Masataka Yanagawa & Asu, 2025. "Single-molecule methods for characterizing receptor dimers reveal metastable opioid receptor homodimers that induce functional modulation," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    6. Patricia M. Dijkman & Oliver K. Castell & Alan D. Goddard & Juan C. Munoz-Garcia & Chris Graaf & Mark I. Wallace & Anthony Watts, 2018. "Dynamic tuneable G protein-coupled receptor monomer-dimer populations," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    7. Julia H. White & Alan Wise & Martin J. Main & Andrew Green & Neil J. Fraser & Graham H. Disney & Ashley A. Barnes & Piers Emson & Steven M. Foord & Fiona H. Marshall, 1998. "Heterodimerization is required for the formation of a functional GABAB receptor," Nature, Nature, vol. 396(6712), pages 679-682, December.
    8. Matthew B. Stone & Sarah L. Veatch, 2015. "Steady-state cross-correlations for live two-colour super-resolution localization data sets," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    9. Shun Kaneko & Shunsuke Imai & Tomomi Uchikubo-Kamo & Tamao Hisano & Nobuaki Asao & Mikako Shirouzu & Ichio Shimada, 2024. "Structural and dynamic insights into the activation of the μ-opioid receptor by an allosteric modulator," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Zhou & Taka A. Tsunoyama & Rinshi S. Kasai & Koichiro M. Hirosawa & Ziya Kalay & Amine Aladag & Takahiro K. Fujiwara & Tatsushi Yokoyama & Masayuki Sakamoto & Ryoji Kise & Masataka Yanagawa & Asu, 2025. "Single-molecule methods for characterizing receptor dimers reveal metastable opioid receptor homodimers that induce functional modulation," Nature Communications, Nature, vol. 16(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Zhou & Taka A. Tsunoyama & Rinshi S. Kasai & Koichiro M. Hirosawa & Ziya Kalay & Amine Aladag & Takahiro K. Fujiwara & Tatsushi Yokoyama & Masayuki Sakamoto & Ryoji Kise & Masataka Yanagawa & Asu, 2025. "Single-molecule methods for characterizing receptor dimers reveal metastable opioid receptor homodimers that induce functional modulation," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    2. Daniele Di Marino & Paolo Conflitti & Stefano Motta & Vittorio Limongelli, 2023. "Structural basis of dimerization of chemokine receptors CCR5 and CXCR4," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Koichiro M. Hirosawa & Yusuke Sato & Rinshi S. Kasai & Eriko Yamaguchi & Naoko Komura & Hiromune Ando & Ayuko Hoshino & Yasunari Yokota & Kenichi G. N. Suzuki, 2025. "Uptake of small extracellular vesicles by recipient cells is facilitated by paracrine adhesion signaling," Nature Communications, Nature, vol. 16(1), pages 1-24, December.
    4. Iqra Sohail & Suli-Anne Laurin & Gunnar Kleinau & Vidicha Chunilal & Andrew Morton & Alfonso Brenlla & Zeynep Cansu Uretmen Kagiali & Marie-José Blouin & Javier A. Tello & Annette G. Beck-Sickinger & , 2025. "MRAP2 modifies the signaling and oligomerization state of the melanocortin-4 receptor," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    5. Shun Kaneko & Shunsuke Imai & Tomomi Uchikubo-Kamo & Tamao Hisano & Nobuaki Asao & Mikako Shirouzu & Ichio Shimada, 2024. "Structural and dynamic insights into the activation of the μ-opioid receptor by an allosteric modulator," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Wenli Zhao & Wenru Zhang & Mu Wang & Minmin Lu & Shutian Chen & Tingting Tang & Gisela Schnapp & Holger Wagner & Albert Brennauer & Cuiying Yi & Xiaojing Chu & Shuo Han & Beili Wu & Qiang Zhao, 2022. "Ligand recognition and activation of neuromedin U receptor 2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Katie L. Sharrocks & Francesca Fanelli & Yewei Liu & Annabelle J. Milner & Wu Yining & Bernadette Byrne & Aylin C. Hanyaloglu, 2025. "Stabilized D2R G protein-coupled receptor oligomers identify multi-state β-arrestin complexes," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    8. Song-Meng Wang & Yan-Fang Wang & Liping Huang & Li-Shuo Zheng & Hao Nian & Yu-Tao Zheng & Huan Yao & Wei Jiang & Xiaoping Wang & Liu-Pan Yang, 2023. "Chiral recognition of neutral guests by chiral naphthotubes with a bis-thiourea endo-functionalized cavity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Marie-Lise Jobin & Sana Siddig & Zsombor Koszegi & Yann Lanoiselée & Vladimir Khayenko & Titiwat Sungkaworn & Christian Werner & Kerstin Seier & Christin Misigaiski & Giovanna Mantovani & Markus Sauer, 2023. "Filamin A organizes γ‑aminobutyric acid type B receptors at the plasma membrane," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Junke Liu & Hengmin Tang & Chanjuan Xu & Shengnan Zhou & Xunying Zhu & Yuanyuan Li & Laurent Prézeau & Tao Xu & Jean-Philippe Pin & Philippe Rondard & Wei Ji & Jianfeng Liu, 2022. "Biased signaling due to oligomerization of the G protein-coupled platelet-activating factor receptor," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Md Tariqul Haque Tuhin & Dengpan Liang & Fang Liu & Hala Aldawod & Toufiq Ul Amin & Joshua S. Ho & Rasha Emara & Arjun D. Patel & Melanie A. Felmlee & Miki S. Park & James A. Uchizono & Mamoun M. Alha, 2022. "Peripherally restricted transthyretin-based delivery system for probes and therapeutics avoiding opioid-related side effects," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Björn D. M. Bean & Colleen J. Mulvihill & Riddhiman K. Garge & Daniel R. Boutz & Olivier Rousseau & Brendan M. Floyd & William Cheney & Elizabeth C. Gardner & Andrew D. Ellington & Edward M. Marcotte , 2022. "Functional expression of opioid receptors and other human GPCRs in yeast engineered to produce human sterols," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Justine S. Paradis & Xiang Feng & Brigitte Murat & Robert E. Jefferson & Badr Sokrat & Martyna Szpakowska & Mireille Hogue & Nick D. Bergkamp & Franziska M. Heydenreich & Martine J. Smit & Andy Chevig, 2022. "Computationally designed GPCR quaternary structures bias signaling pathway activation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Jun Bae Park & Bibekananda Sahoo & Amita Rani Sahoo & Dokyun Kim & Hogyu David Seo & James Bowman & Mi-Jeong Kwak & Sophia Suh & Matthias Buck & Xinghong Dai & Jae U. Jung, 2025. "Structural basis for ligand promiscuity and high signaling activity of Kaposi’s Sarcoma-associated Herpesvirus-encoded GPCR," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    15. Daniel Wirth & Ece Özdemir & Kalina Hristova, 2023. "Quantification of ligand and mutation-induced bias in EGFR phosphorylation in direct response to ligand binding," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Jun Yu & Amit Kumar & Xuefeng Zhang & Charlotte Martin & Kevin Van holsbeeck & Pierre Raia & Antoine Koehl & Toon Laeremans & Jan Steyaert & Aashish Manglik & Steven Ballet & Andreas Boland & Miriam S, 2024. "Structural basis of μ-opioid receptor targeting by a nanobody antagonist," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64695-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.