IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41907-1.html
   My bibliography  Save this article

Hierarchical assembly of tryptophan zipper peptides into stress-relaxing bioactive hydrogels

Author

Listed:
  • Ashley K. Nguyen

    (University of New South Wales
    University of New South Wales)

  • Thomas G. Molley

    (University of New South Wales
    University of New South Wales
    University of New South Wales Sydney)

  • Egi Kardia

    (University of New South Wales
    University of New South Wales
    University of New South Wales)

  • Sylvia Ganda

    (University of New South Wales
    University of New South Wales)

  • Sudip Chakraborty

    (University of New South Wales)

  • Sharon L. Wong

    (University of New South Wales
    University of New South Wales
    University of New South Wales)

  • Juanfang Ruan

    (University of New South Wales)

  • Bethany E. Yee

    (University of New South Wales
    University of New South Wales)

  • Jitendra Mata

    (University of New South Wales
    Australian Nuclear Science and Technology Organization)

  • Abhishek Vijayan

    (University of New South Wales
    University of New South Wales
    University of New South Wales)

  • Naresh Kumar

    (University of New South Wales)

  • Richard D. Tilley

    (University of New South Wales
    University of New South Wales)

  • Shafagh A. Waters

    (University of New South Wales
    University of New South Wales
    University of New South Wales
    University of New South Wales)

  • Kristopher A. Kilian

    (University of New South Wales
    University of New South Wales
    University of New South Wales Sydney
    University of New South Wales)

Abstract

Soft materials in nature are formed through reversible supramolecular assembly of biological polymers into dynamic hierarchical networks. Rational design has led to self-assembling peptides with structural similarities to natural materials. However, recreating the dynamic functional properties inherent to natural systems remains challenging. Here we report the discovery of a short peptide based on the tryptophan zipper (trpzip) motif, that shows multiscale hierarchical ordering that leads to emergent dynamic properties. Trpzip hydrogels are antimicrobial and self-healing, with tunable viscoelasticity and unique yield-stress properties that allow immediate harvest of embedded cells through a flick of the wrist. This characteristic makes Trpzip hydrogels amenable to syringe extrusion, which we demonstrate with examples of cell delivery and bioprinting. Trpzip hydrogels display innate bioactivity, allowing propagation of human intestinal organoids with apical-basal polarization. Considering these extensive attributes, we anticipate the Trpzip motif will prove a versatile building block for supramolecular assembly of soft materials for biotechnology and medicine.

Suggested Citation

  • Ashley K. Nguyen & Thomas G. Molley & Egi Kardia & Sylvia Ganda & Sudip Chakraborty & Sharon L. Wong & Juanfang Ruan & Bethany E. Yee & Jitendra Mata & Abhishek Vijayan & Naresh Kumar & Richard D. Til, 2023. "Hierarchical assembly of tryptophan zipper peptides into stress-relaxing bioactive hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41907-1
    DOI: 10.1038/s41467-023-41907-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41907-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41907-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Toshiro Sato & Robert G. Vries & Hugo J. Snippert & Marc van de Wetering & Nick Barker & Daniel E. Stange & Johan H. van Es & Arie Abo & Pekka Kujala & Peter J. Peters & Hans Clevers, 2009. "Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche," Nature, Nature, vol. 459(7244), pages 262-265, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suran Kim & Sungjin Min & Yi Sun Choi & Sung-Hyun Jo & Jae Hun Jung & Kyusun Han & Jin Kim & Soohwan An & Yong Woo Ji & Yun-Gon Kim & Seung-Woo Cho, 2022. "Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    2. Shuting Li & Chia-Wen Lu & Elia C. Diem & Wang Li & Melanie Guderian & Marc Lindenberg & Friederike Kruse & Manuela Buettner & Stefan Floess & Markus R. Winny & Robert Geffers & Hans-Hermann Richnow &, 2022. "Acetyl-CoA-Carboxylase 1-mediated de novo fatty acid synthesis sustains Lgr5+ intestinal stem cell function," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Cezanne Miete & Gonzalo P. Solis & Alexey Koval & Martina Brückner & Vladimir L. Katanaev & Jürgen Behrens & Dominic B. Bernkopf, 2022. "Gαi2-induced conductin/axin2 condensates inhibit Wnt/β-catenin signaling and suppress cancer growth," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Anna Urciuolo & Giovanni Giuseppe Giobbe & Yixiao Dong & Federica Michielin & Luca Brandolino & Michael Magnussen & Onelia Gagliano & Giulia Selmin & Valentina Scattolini & Paolo Raffa & Paola Caccin , 2023. "Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Carlos Sebastian & Christina Ferrer & Maria Serra & Jee-Eun Choi & Nadia Ducano & Alessia Mira & Manasvi S. Shah & Sylwia A. Stopka & Andrew J. Perciaccante & Claudio Isella & Daniel Moya-Rull & Maria, 2022. "A non-dividing cell population with high pyruvate dehydrogenase kinase activity regulates metabolic heterogeneity and tumorigenesis in the intestine," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Nanase Igarashi & Kenichi Miyata & Tze Mun Loo & Masatomo Chiba & Aki Hanyu & Mika Nishio & Hiroko Kawasaki & Hao Zheng & Shinya Toyokuni & Shunsuke Kon & Keiji Moriyama & Yasuyuki Fujita & Akiko Taka, 2022. "Hepatocyte growth factor derived from senescent cells attenuates cell competition-induced apical elimination of oncogenic cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Mara Martín-Alonso & Sharif Iqbal & Pia M. Vornewald & Håvard T. Lindholm & Mirjam J. Damen & Fernando Martínez & Sigrid Hoel & Alberto Díez-Sánchez & Maarten Altelaar & Pekka Katajisto & Alicia G. Ar, 2021. "Smooth muscle-specific MMP17 (MT4-MMP) regulates the intestinal stem cell niche and regeneration after damage," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    8. Jina Yun & Simon Hansen & Otto Morris & David T. Madden & Clare Peters Libeu & Arjun J. Kumar & Cameron Wehrfritz & Aaron H. Nile & Yingnan Zhang & Lijuan Zhou & Yuxin Liang & Zora Modrusan & Michelle, 2023. "Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Gustavo Medeiros & Raphael Ortiz & Petr Strnad & Andrea Boni & Franziska Moos & Nicole Repina & Ludivine Challet Meylan & Francisca Maurer & Prisca Liberali, 2022. "Multiscale light-sheet organoid imaging framework," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. I. F. Schene & I. P. Joore & J. H. L. Baijens & R. Stevelink & G. Kok & S. Shehata & E. F. Ilcken & E. C. M. Nieuwenhuis & D. P. Bolhuis & R. C. M. Rees & S. A. Spelier & H. P. J. Doef & J. M. Beekman, 2022. "Mutation-specific reporter for optimization and enrichment of prime editing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Shamir Montazid & Sheila Bandyopadhyay & Daniel W. Hart & Nan Gao & Brian Johnson & Sri G. Thrumurthy & Dustin J. Penn & Bettina Wernisch & Mukesh Bansal & Philipp M. Altrock & Fabian Rost & Patrycja , 2023. "Adult stem cell activity in naked mole rats for long-term tissue maintenance," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    12. Maarten H. Geurts & Shashank Gandhi & Matteo G. Boretto & Ninouk Akkerman & Lucca L. M. Derks & Gijs Son & Martina Celotti & Sarina Harshuk-Shabso & Flavia Peci & Harry Begthel & Delilah Hendriks & Pa, 2023. "One-step generation of tumor models by base editor multiplexing in adult stem cell-derived organoids," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Kristina Handler & Karsten Bach & Costanza Borrelli & Salvatore Piscuoglio & Xenia Ficht & Ilhan E. Acar & Andreas E. Moor, 2023. "Fragment-sequencing unveils local tissue microenvironments at single-cell resolution," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Omid Omrani & Anna Krepelova & Seyed Mohammad Mahdi Rasa & Dovydas Sirvinskas & Jing Lu & Francesco Annunziata & George Garside & Seerat Bajwa & Susanne Reinhardt & Lisa Adam & Sandra Käppel & Nadia D, 2023. "IFNγ-Stat1 axis drives aging-associated loss of intestinal tissue homeostasis and regeneration," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Ning Li & Qin Zhu & Yuhua Tian & Kyung Jin Ahn & Xin Wang & Zvi Cramer & Justine Jou & Ian W. Folkert & Pengfei Yu & Stephanie Adams-Tzivelekidis & Priyanka Sehgal & Najia N. Mahmoud & Cary B. Aarons , 2023. "Mapping and modeling human colorectal carcinoma interactions with the tumor microenvironment," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Antonella Fazio & Dora Bordoni & Jan W. P. Kuiper & Saskia Weber-Stiehl & Stephanie T. Stengel & Philipp Arnold & David Ellinghaus & Go Ito & Florian Tran & Berith Messner & Anna Henning & Joana P. Be, 2022. "DNA methyltransferase 3A controls intestinal epithelial barrier function and regeneration in the colon," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Tsunaki Higa & Yasutaka Okita & Akinobu Matsumoto & Shogo Nakayama & Takeru Oka & Osamu Sugahara & Daisuke Koga & Shoichiro Takeishi & Hirokazu Nakatsumi & Naoki Hosen & Sylvie Robine & Makoto M. Take, 2022. "Spatiotemporal reprogramming of differentiated cells underlies regeneration and neoplasia in the intestinal epithelium," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    18. Clara Morral & Arshad Ayyaz & Hsuan-Cheng Kuo & Mardi Fink & Ioannis I. Verginadis & Andrea R. Daniel & Danielle N. Burner & Lucy M. Driver & Sloane Satow & Stephanie Hasapis & Reem Ghinnagow & Lixia , 2024. "p53 promotes revival stem cells in the regenerating intestine after severe radiation injury," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Sophie K Kay & Heather A Harrington & Sarah Shepherd & Keith Brennan & Trevor Dale & James M Osborne & David J Gavaghan & Helen M Byrne, 2017. "The role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-28, February.
    20. Manqiang Lin & Kimberly Hartl & Julian Heuberger & Giulia Beccaceci & Hilmar Berger & Hao Li & Lichao Liu & Stefanie Müllerke & Thomas Conrad & Felix Heymann & Andrew Woehler & Frank Tacke & Nikolaus , 2023. "Establishment of gastrointestinal assembloids to study the interplay between epithelial crypts and their mesenchymal niche," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41907-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.