IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41375-7.html
   My bibliography  Save this article

Dynamically tuning friction at the graphene interface using the field effect

Author

Listed:
  • Gus Greenwood

    (University of Illinois at Urbana-Champaign)

  • Jin Myung Kim

    (University of Illinois at Urbana-Champaign
    University of California, Irvine)

  • Shahriar Muhammad Nahid

    (University of Illinois at Urbana-Champaign)

  • Yeageun Lee

    (University of Illinois at Urbana-Champaign)

  • Amin Hajarian

    (University of California, Irvine)

  • SungWoo Nam

    (University of California, Irvine)

  • Rosa M. Espinosa-Marzal

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

Abstract

Dynamically controlling friction in micro- and nanoscale devices is possible using applied electrical bias between contacting surfaces, but this can also induce unwanted reactions which can affect device performance. External electric fields provide a way around this limitation by removing the need to apply bias directly between the contacting surfaces. 2D materials are promising candidates for this approach as their properties can be easily tuned by electric fields and they can be straightforwardly used as surface coatings. This work investigates the friction between single layer graphene and an atomic force microscope tip under the influence of external electric fields. While the primary effect in most systems is electrostatically controllable adhesion, graphene in contact with semiconducting tips exhibits a regime of unexpectedly enhanced and highly tunable friction. The origins of this phenomenon are discussed in the context of fundamental frictional dissipation mechanisms considering stick slip behavior, electron-phonon coupling and viscous electronic flow.

Suggested Citation

  • Gus Greenwood & Jin Myung Kim & Shahriar Muhammad Nahid & Yeageun Lee & Amin Hajarian & SungWoo Nam & Rosa M. Espinosa-Marzal, 2023. "Dynamically tuning friction at the graphene interface using the field effect," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41375-7
    DOI: 10.1038/s41467-023-41375-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41375-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41375-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan Mayzel & Victor Steinberg & Atul Varshney, 2019. "Stokes flow analogous to viscous electron current in graphene," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    2. Oded Hod & Ernst Meyer & Quanshui Zheng & Michael Urbakh, 2018. "Structural superlubricity and ultralow friction across the length scales," Nature, Nature, vol. 563(7732), pages 485-492, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Chen & Cong Lin & Diwei Shi & Xuanyu Huang & Quanshui Zheng & Jinhui Nie & Ming Ma, 2023. "Fully automatic transfer and measurement system for structural superlubric materials," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Eric Cereceda-López & Alexander P. Antonov & Artem Ryabov & Philipp Maass & Pietro Tierno, 2023. "Overcrowding induces fast colloidal solitons in a slowly rotating potential landscape," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Dhanola, Anil & Khanna, Navneet & Gajrani, Kishor Kumar, 2022. "A critical review on liquid superlubricitive technology for attaining ultra-low friction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Xuanyu Huang & Tengfei Li & Jin Wang & Kai Xia & Zipei Tan & Deli Peng & Xiaojian Xiang & Bin Liu & Ming Ma & Quanshui Zheng, 2023. "Robust microscale structural superlubricity between graphite and nanostructured surface," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41375-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.