IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41225-6.html
   My bibliography  Save this article

The relationship between geographic range size and rates of species diversification

Author

Listed:
  • Jan Smyčka

    (Charles University and the Academy of Sciences of the Czech Republic)

  • Anna Toszogyova

    (Charles University and the Academy of Sciences of the Czech Republic)

  • David Storch

    (Charles University and the Academy of Sciences of the Czech Republic
    Charles University)

Abstract

Range size is a universal characteristic of every biological species, and is often assumed to affect diversification rate. There are strong theoretical arguments that large-ranged species should have higher rates of diversification. On the other hand, the observation that small-ranged species are often phylogenetically clustered might indicate high diversification of small-ranged species. This discrepancy between theory and the data may be caused by the fact that typical methods of data analysis do not account for range size changes during speciation. Here we use a cladogenetic state-dependent diversification model applied to mammals to show that range size changes during speciation are ubiquitous and small-ranged species indeed diversify generally slower, as theoretically expected. However, both range size and diversification are strongly influenced by idiosyncratic and spatially localized events, such as colonization of an archipelago or a mountain system, which often override the general pattern of range size evolution.

Suggested Citation

  • Jan Smyčka & Anna Toszogyova & David Storch, 2023. "The relationship between geographic range size and rates of species diversification," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41225-6
    DOI: 10.1038/s41467-023-41225-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41225-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41225-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Godfrey Hewitt, 2000. "The genetic legacy of the Quaternary ice ages," Nature, Nature, vol. 405(6789), pages 907-913, June.
    2. Brent D. Mishler & Nunzio Knerr & Carlos E. González-Orozco & Andrew H. Thornhill & Shawn W. Laffan & Joseph T. Miller, 2014. "Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    3. Mark Pagel, 1999. "Inferring the historical patterns of biological evolution," Nature, Nature, vol. 401(6756), pages 877-884, October.
    4. Luis Valente & Albert B. Phillimore & Martim Melo & Ben H. Warren & Sonya M. Clegg & Katja Havenstein & Ralph Tiedemann & Juan Carlos Illera & Christophe Thébaud & Tina Aschenbach & Rampal S. Etienne, 2020. "A simple dynamic model explains the diversity of island birds worldwide," Nature, Nature, vol. 579(7797), pages 92-96, March.
    5. Dolph Schluter & Matthew W. Pennell, 2017. "Speciation gradients and the distribution of biodiversity," Nature, Nature, vol. 546(7656), pages 48-55, June.
    6. Daniel L. Rabosky & Jonathan Chang & Pascal O. Title & Peter F. Cowman & Lauren Sallan & Matt Friedman & Kristin Kaschner & Cristina Garilao & Thomas J. Near & Marta Coll & Michael E. Alfaro, 2018. "An inverse latitudinal gradient in speciation rate for marine fishes," Nature, Nature, vol. 559(7714), pages 392-395, July.
    7. Knud A. Jønsson & Ben G. Holt, 2015. "Islands contribute disproportionately high amounts of evolutionary diversity in passerine birds," Nature Communications, Nature, vol. 6(1), pages 1-6, December.
    8. W. Jetz & G. H. Thomas & J. B. Joy & K. Hartmann & A. O. Mooers, 2012. "The global diversity of birds in space and time," Nature, Nature, vol. 491(7424), pages 444-448, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory Thom & Marcelo Gehara & Brian Tilston Smith & Cristina Y. Miyaki & Fábio Raposo Amaral, 2021. "Microevolutionary dynamics show tropical valleys are deeper for montane birds of the Atlantic Forest," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Felipe O. Cerezer & Cristian S. Dambros & Marco T. P. Coelho & Fernanda A. S. Cassemiro & Elisa Barreto & James S. Albert & Rafael O. Wüest & Catherine H. Graham, 2023. "Accelerated body size evolution in upland environments is correlated with recent speciation in South American freshwater fishes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Elspeth Kenny & Tim R. Birkhead & Jonathan P. Green, 2017. "Allopreening in birds is associated with parental cooperation over offspring care and stable pair bonds across years," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(4), pages 1142-1148.
    4. Jonathan A. Rader & Tyson L. Hedrick, 2023. "Morphological evolution of bird wings follows a mechanical sensitivity gradient determined by the aerodynamics of flapping flight," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Maxime Policarpo & Maude W. Baldwin & Didier Casane & Walter Salzburger, 2024. "Diversity and evolution of the vertebrate chemoreceptor gene repertoire," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Nathan M. Michielsen & Steven M. Goodman & Voahangy Soarimalala & Alexandra A. E. Geer & Liliana M. Dávalos & Grace I. Saville & Nathan Upham & Luis Valente, 2023. "The macroevolutionary impact of recent and imminent mammal extinctions on Madagascar," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Jørgen S Søraker & Jonathan Wright & Fredrik Øglænd Hanslin & Michael Le Pepke, 2023. "The evolution of extra-pair paternity and paternal care in birds," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(5), pages 780-789.
    8. Rob Cooke & Ferran Sayol & Tobias Andermann & Tim M. Blackburn & Manuel J. Steinbauer & Alexandre Antonelli & Søren Faurby, 2023. "Undiscovered bird extinctions obscure the true magnitude of human-driven extinction waves," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Susanna Pla & Chiara Benvenuto & Isabella Capellini & Francesc Piferrer, 2022. "Switches, stability and reversals in the evolutionary history of sexual systems in fish," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Vall-llosera, Miquel & Cassey, Phillip, 2017. "Physical attractiveness, constraints to the trade and handling requirements drive the variation in species availability in the Australian cagebird trade," Ecological Economics, Elsevier, vol. 131(C), pages 407-413.
    11. Cameron J Nordell & Samuel Haché & Erin M Bayne & Péter Sólymos & Kenneth R Foster & Christine M Godwin & Richard Krikun & Peter Pyle & Keith A Hobson, 2016. "Within-Site Variation in Feather Stable Hydrogen Isotope (δ2Hf) Values of Boreal Songbirds: Implications for Assignment to Molt Origin," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    12. Dimitar Dimitrov & Xiaoting Xu & Xiangyan Su & Nawal Shrestha & Yunpeng Liu & Jonathan D. Kennedy & Lisha Lyu & David Nogués-Bravo & James Rosindell & Yong Yang & Jon Fjeldså & Jianquan Liu & Bernhard, 2023. "Diversification of flowering plants in space and time," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Sarah T. Friedman & Martha M. Muñoz, 2023. "A latitudinal gradient of deep-sea invasions for marine fishes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Arkadiusz Frӧhlich & Dorota Kotowska & Rafał Martyka & Matthew R. E. Symonds, 2023. "Allometry reveals trade-offs between Bergmann’s and Allen’s rules, and different avian adaptive strategies for thermoregulation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Rodrigo S Rios & Cristian Salgado-Luarte & Ernesto Gianoli, 2014. "Species Divergence and Phylogenetic Variation of Ecophysiological Traits in Lianas and Trees," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-10, June.
    16. Wen-Yong Guo & Josep M. Serra-Diaz & Wolf L. Eiserhardt & Brian S. Maitner & Cory Merow & Cyrille Violle & Matthew J. Pound & Miao Sun & Ferry Slik & Anne Blach-Overgaard & Brian J. Enquist & Jens-Chr, 2023. "Climate change and land use threaten global hotspots of phylogenetic endemism for trees," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Ilaria Bernabò & Viviana Cittadino & Sandro Tripepi & Vittoria Marchianò & Sandro Piazzini & Maurizio Biondi & Mattia Iannella, 2022. "Updating Distribution, Ecology, and Hotspots for Three Amphibian Species to Set Conservation Priorities in a European Glacial Refugium," Land, MDPI, vol. 11(8), pages 1-19, August.
    18. Aris Katzourakis & Gkikas Magiorkinis & Aaron G Lim & Sunetra Gupta & Robert Belshaw & Robert Gifford, 2014. "Larger Mammalian Body Size Leads to Lower Retroviral Activity," PLOS Pathogens, Public Library of Science, vol. 10(7), pages 1-11, July.
    19. Jianhua Wang & Guan-Zhu Han, 2023. "Genome mining shows that retroviruses are pervasively invading vertebrate genomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Jonas Eberle & Renier Myburgh & Dirk Ahrens, 2014. "The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence?," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-16, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41225-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.