IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40962-y.html
   My bibliography  Save this article

γδ T cells control murine skin inflammation and subcutaneous adipose wasting during chronic Trypanosoma brucei infection

Author

Listed:
  • Juan F. Quintana

    (University of Glasgow
    University of Glasgow
    Immunity to Infection and Respiratory Medicine, Lydia Becker Institute of Immunology and Inflammation. University of Manchester)

  • Matthew C. Sinton

    (University of Glasgow
    University of Glasgow
    University of Manchester)

  • Praveena Chandrasegaran

    (University of Glasgow
    University of Glasgow)

  • Agatha Nabilla Lestari

    (University of Glasgow
    University of Glasgow)

  • Rhiannon Heslop

    (University of Glasgow
    University of Glasgow)

  • Bachar Cheaib

    (University of Glasgow
    University of Glasgow
    Center for Infectious Diseases, Heidelberg University Hospital)

  • John Ogunsola

    (University of Glasgow
    University of Glasgow)

  • Dieudonne Mumba Ngoyi

    (National Institute of Biomedical Research)

  • Nono-Raymond Kuispond Swar

    (University of Glasgow
    National Institute of Biomedical Research)

  • Anneli Cooper

    (University of Glasgow
    University of Glasgow)

  • Neil A. Mabbott

    (University of Edinburgh)

  • Seth B. Coffelt

    (University of Glasgow
    Cancer Research UK Beatson Institute)

  • Annette MacLeod

    (University of Glasgow
    University of Glasgow)

Abstract

African trypanosomes colonise the skin to ensure parasite transmission. However, how the skin responds to trypanosome infection remains unresolved. Here, we investigate the local immune response of the skin in a murine model of infection using spatial and single cell transcriptomics. We detect expansion of dermal IL-17A-producing Vγ6+ cells during infection, which occurs in the subcutaneous adipose tissue. In silico cell-cell communication analysis suggests that subcutaneous interstitial preadipocytes trigger T cell activation via Cd40 and Tnfsf18 signalling, amongst others. In vivo, we observe that female mice deficient for IL-17A-producing Vγ6+ cells show extensive inflammation and limit subcutaneous adipose tissue wasting, independently of parasite burden. Based on these observations, we propose that subcutaneous adipocytes and Vγ6+ cells act in concert to limit skin inflammation and adipose tissue wasting. These studies provide new insights into the role of γδ T cell and subcutaneous adipocytes as homeostatic regulators of skin immunity during chronic infection.

Suggested Citation

  • Juan F. Quintana & Matthew C. Sinton & Praveena Chandrasegaran & Agatha Nabilla Lestari & Rhiannon Heslop & Bachar Cheaib & John Ogunsola & Dieudonne Mumba Ngoyi & Nono-Raymond Kuispond Swar & Anneli , 2023. "γδ T cells control murine skin inflammation and subcutaneous adipose wasting during chronic Trypanosoma brucei infection," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40962-y
    DOI: 10.1038/s41467-023-40962-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40962-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40962-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seth B. Coffelt & Kelly Kersten & Chris W. Doornebal & Jorieke Weiden & Kim Vrijland & Cheei-Sing Hau & Niels J. M. Verstegen & Metamia Ciampricotti & Lukas J. A. C. Hawinkels & Jos Jonkers & Karin E., 2015. "IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis," Nature, Nature, vol. 522(7556), pages 345-348, June.
    2. Alexandre Girard & Anneli Cooper & Samuel Mabbott & Barbara Bradley & Steven Asiala & Lauren Jamieson & Caroline Clucas & Paul Capewell & Francesco Marchesi & Matthew P Gibbins & Franziska Hentzschel , 2021. "Raman spectroscopic analysis of skin as a diagnostic tool for Human African Trypanosomiasis," PLOS Pathogens, Public Library of Science, vol. 17(11), pages 1-28, November.
    3. Martina Damo & Noah I. Hornick & Aarthi Venkat & Ivana William & Kathryn Clulo & Srividhya Venkatesan & Jiaming He & Eric Fagerberg & Jennifer L. Loza & Darwin Kwok & Aya Tal & Jessica Buck & Can Cui , 2023. "PD-1 maintains CD8 T cell tolerance towards cutaneous neoantigens," Nature, Nature, vol. 619(7968), pages 151-159, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junho Lee & Donggu Lee & Sean Lawler & Yangjin Kim, 2021. "Role of neutrophil extracellular traps in regulation of lung cancer invasion and metastasis: Structural insights from a computational model," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-29, February.
    2. Charlotte R. Bell & Victoria S. Pelly & Agrin Moeini & Shih-Chieh Chiang & Eimear Flanagan & Christian P. Bromley & Christopher Clark & Charles H. Earnshaw & Maria A. Koufaki & Eduardo Bonavita & Sant, 2022. "Chemotherapy-induced COX-2 upregulation by cancer cells defines their inflammatory properties and limits the efficacy of chemoimmunotherapy combinations," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Scott C. Lien & Dalam Ly & S. Y. Cindy Yang & Ben X. Wang & Derek L. Clouthier & Michael St. Paul & Ramy Gadalla & Babak Noamani & Carlos R. Garcia-Batres & Sarah Boross-Harmer & Philippe L. Bedard & , 2024. "Tumor reactive γδ T cells contribute to a complete response to PD-1 blockade in a Merkel cell carcinoma patient," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Jian Cao & Xuan Zhu & Xiaokun Zhao & Xue-Feng Li & Ran Xu, 2016. "Neutrophil-to-Lymphocyte Ratio Predicts PSA Response and Prognosis in Prostate Cancer: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-15, July.
    5. Laura C. D. Pomatto-Watson & Monica Bodogai & Oye Bosompra & Jonathan Kato & Sarah Wong & Melissa Carpenter & Eleonora Duregon & Dolly Chowdhury & Priya Krishna & Sandy Ng & Emeline Ragonnaud & Robert, 2021. "Daily caloric restriction limits tumor growth more effectively than caloric cycling regardless of dietary composition," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    6. Derek Lee & Zachary Spencer Dunn & Wenbin Guo & Carl J. Rosenthal & Natalie E. Penn & Yanqi Yu & Kuangyi Zhou & Zhe Li & Feiyang Ma & Miao Li & Tsun-Ching Song & Xinjian Cen & Yan-Ruide Li & Jin J. Zh, 2023. "Unlocking the potential of allogeneic Vδ2 T cells for ovarian cancer therapy through CD16 biomarker selection and CAR/IL-15 engineering," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Nicolaj S. Hackert & Felix A. Radtke & Tarik Exner & Hanns-Martin Lorenz & Carsten Müller-Tidow & Peter A. Nigrovic & Guido Wabnitz & Ricardo Grieshaber-Bouyer, 2023. "Human and mouse neutrophils share core transcriptional programs in both homeostatic and inflamed contexts," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40962-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.