IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40760-6.html
   My bibliography  Save this article

Loss of LCMT1 and biased protein phosphatase 2A heterotrimerization drive prostate cancer progression and therapy resistance

Author

Listed:
  • Reyaz ur Rasool

    (University of Pennsylvania)

  • Caitlin M. O’Connor

    (University of Michigan
    University of Michigan)

  • Chandan Kanta Das

    (University of Pennsylvania)

  • Mohammed Alhusayan

    (University of Pennsylvania)

  • Brijesh Kumar Verma

    (University of Pennsylvania)

  • Sehbanul Islam

    (University of Pennsylvania)

  • Ingrid E. Frohner

    (Medical University of Vienna, Dr. Bohr-Gasse 9/2)

  • Qu Deng

    (University of Pennsylvania)

  • Erick Mitchell-Velasquez

    (University of Pennsylvania)

  • Jaya Sangodkar

    (University of Michigan
    University of Michigan)

  • Aqila Ahmed

    (University of Michigan
    University of Michigan)

  • Sarah Linauer

    (Medical University of Vienna, Dr. Bohr-Gasse 9/2)

  • Ingrid Mudrak

    (Medical University of Vienna, Dr. Bohr-Gasse 9/2)

  • Jessica Rainey

    (University of Pennsylvania)

  • Kaitlin P. Zawacki

    (University of Michigan
    University of Michigan)

  • Tahra K. Suhan

    (University of Michigan
    University of Michigan)

  • Catherine G. Callahan

    (University of Michigan
    University of Michigan)

  • Ryan Rebernick

    (University of Michigan Medical School
    University of Michigan)

  • Ramakrishnan Natesan

    (University of Pennsylvania)

  • Javed Siddiqui

    (University of Michigan Medical School
    University of Michigan)

  • Guido Sauter

    (University Medical Center Hamburg-Eppendorf)

  • Dafydd Thomas

    (University of Michigan)

  • Shaomeng Wang

    (University of Michigan)

  • Derek J. Taylor

    (Department of Biochemistry Case Western Reserve University School of Medicine)

  • Ronald Simon

    (University Medical Center Hamburg-Eppendorf)

  • Marcin Cieslik

    (University of Michigan Medical School
    University of Michigan)

  • Arul M. Chinnaiyan

    (University of Michigan Medical School
    University of Michigan)

  • Luca Busino

    (University of Pennsylvania)

  • Egon Ogris

    (Medical University of Vienna, Dr. Bohr-Gasse 9/2)

  • Goutham Narla

    (University of Michigan
    University of Michigan)

  • Irfan A. Asangani

    (University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania)

Abstract

Loss of the tumor suppressive activity of the protein phosphatase 2A (PP2A) is associated with cancer, but the underlying molecular mechanisms are unclear. PP2A holoenzyme comprises a heterodimeric core, a scaffolding A subunit and a catalytic C subunit, and one of over 20 distinct substrate-directing regulatory B subunits. Methylation of the C subunit regulates PP2A heterotrimerization, affecting B subunit binding and substrate specificity. Here, we report that the leucine carboxy methyltransferase (LCMT1), which methylates the L309 residue of the C subunit, acts as a suppressor of androgen receptor (AR) addicted prostate cancer (PCa). Decreased methyl-PP2A-C levels in prostate tumors is associated with biochemical recurrence and metastasis. Silencing LCMT1 increases AR activity and promotes castration-resistant prostate cancer growth. LCMT1-dependent methyl-sensitive AB56αCme heterotrimers target AR and its critical coactivator MED1 for dephosphorylation, resulting in the eviction of the AR-MED1 complex from chromatin and loss of target gene expression. Mechanistically, LCMT1 is regulated by S6K1-mediated phosphorylation-induced degradation requiring the β-TRCP, leading to acquired resistance to anti-androgens. Finally, feedforward stabilization of LCMT1 by small molecule activator of phosphatase (SMAP) results in attenuation of AR-signaling and tumor growth inhibition in anti-androgen refractory PCa. These findings highlight methyl-PP2A-C as a prognostic marker and that the loss of LCMT1 is a major determinant in AR-addicted PCa, suggesting therapeutic potential for AR degraders or PP2A modulators in prostate cancer treatment.

Suggested Citation

  • Reyaz ur Rasool & Caitlin M. O’Connor & Chandan Kanta Das & Mohammed Alhusayan & Brijesh Kumar Verma & Sehbanul Islam & Ingrid E. Frohner & Qu Deng & Erick Mitchell-Velasquez & Jaya Sangodkar & Aqila , 2023. "Loss of LCMT1 and biased protein phosphatase 2A heterotrimerization drive prostate cancer progression and therapy resistance," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40760-6
    DOI: 10.1038/s41467-023-40760-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40760-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40760-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    2. Lanbo Xiao & Abhijit Parolia & Yuanyuan Qiao & Pushpinder Bawa & Sanjana Eyunni & Rahul Mannan & Sandra E. Carson & Yu Chang & Xiaoju Wang & Yuping Zhang & Josh N. Vo & Steven Kregel & Stephanie A. Si, 2022. "Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer," Nature, Nature, vol. 601(7893), pages 434-439, January.
    3. Luca Busino & Maddalena Donzelli & Massimo Chiesa & Daniele Guardavaccaro & Dvora Ganoth & N. Valerio Dorrello & Avram Hershko & Michele Pagano & Giulio F. Draetta, 2003. "Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage," Nature, Nature, vol. 426(6962), pages 87-91, November.
    4. Yundong He & Ting Wei & Zhenqing Ye & Jacob J. Orme & Dong Lin & Haoyue Sheng & Ladan Fazli & R. Jeffrey Karnes & Rafael Jimenez & Liguo Wang & Liewei Wang & Martin E. Gleave & Yuzhuo Wang & Lei Shi &, 2021. "A noncanonical AR addiction drives enzalutamide resistance in prostate cancer," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    5. Irfan A. Asangani & Vijaya L. Dommeti & Xiaoju Wang & Rohit Malik & Marcin Cieslik & Rendong Yang & June Escara-Wilke & Kari Wilder-Romans & Sudheer Dhanireddy & Carl Engelke & Mathew K. Iyer & Xiaoju, 2014. "Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer," Nature, Nature, vol. 510(7504), pages 278-282, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anthony C. Bishop & Glorisé Torres-Montalvo & Sravya Kotaru & Kyle Mimun & A. Joshua Wand, 2023. "Robust automated backbone triple resonance NMR assignments of proteins using Bayesian-based simulated annealing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Dick Schijven & Sourena Soheili-Nezhad & Simon E. Fisher & Clyde Francks, 2024. "Exome-wide analysis implicates rare protein-altering variants in human handedness," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Zheng Shen & Daxiao Sun & Adriana Savastano & Sára Joana Varga & Maria-Sol Cima-Omori & Stefan Becker & Alf Honigmann & Markus Zweckstetter, 2023. "Multivalent Tau/PSD-95 interactions arrest in vitro condensates and clusters mimicking the postsynaptic density," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
    8. Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Fan Lu & Liang Zhu & Thomas Bromberger & Jun Yang & Qiannan Yang & Jianmin Liu & Edward F. Plow & Markus Moser & Jun Qin, 2022. "Mechanism of integrin activation by talin and its cooperation with kindlin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Jutta Diessl & Jens Berndtsson & Filomena Broeskamp & Lukas Habernig & Verena Kohler & Carmela Vazquez-Calvo & Arpita Nandy & Carlotta Peselj & Sofia Drobysheva & Ludovic Pelosi & F.-Nora Vögtle & Fab, 2022. "Manganese-driven CoQ deficiency," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Alexander Kroll & Sahasra Ranjan & Martin K. M. Engqvist & Martin J. Lercher, 2023. "A general model to predict small molecule substrates of enzymes based on machine and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Lisa-Marie Appel & Vedran Franke & Johannes Benedum & Irina Grishkovskaya & Xué Strobl & Anton Polyansky & Gregor Ammann & Sebastian Platzer & Andrea Neudolt & Anna Wunder & Lena Walch & Stefanie Kais, 2023. "The SPOC domain is a phosphoserine binding module that bridges transcription machinery with co- and post-transcriptional regulators," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    15. Kalinga Pavan T. Silva & Ganesh Sundar & Anupama Khare, 2023. "Efflux pump gene amplifications bypass necessity of multiple target mutations for resistance against dual-targeting antibiotic," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Maciej K. Kocylowski & Hande Aypek & Wolfgang Bildl & Martin Helmstädter & Philipp Trachte & Bernhard Dumoulin & Sina Wittösch & Lukas Kühne & Ute Aukschun & Carolin Teetzen & Oliver Kretz & Botond Ga, 2022. "A slit-diaphragm-associated protein network for dynamic control of renal filtration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Peicong Lin & Yumeng Yan & Huanyu Tao & Sheng-You Huang, 2023. "Deep transfer learning for inter-chain contact predictions of transmembrane protein complexes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Michael A. Longo & Sunetra Roy & Yue Chen & Karl-Heinz Tomaszowski & Andrew S. Arvai & Jordan T. Pepper & Rebecca A. Boisvert & Selvi Kunnimalaiyaan & Caezanne Keshvani & David Schild & Albino Bacolla, 2023. "RAD51C-XRCC3 structure and cancer patient mutations define DNA replication roles," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Zachary C. Drake & Justin T. Seffernick & Steffen Lindert, 2022. "Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Leonardo Betancurt-Anzola & Markel Martínez-Carranza & Marc Delarue & Kelly M. Zatopek & Andrew F. Gardner & Ludovic Sauguet, 2023. "Molecular basis for proofreading by the unique exonuclease domain of Family-D DNA polymerases," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40760-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.