IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40525-1.html
   My bibliography  Save this article

Prominent Josephson tunneling between twisted single copper oxide planes of Bi2Sr2-xLaxCuO6+y

Author

Listed:
  • Heng Wang

    (Tsinghua University)

  • Yuying Zhu

    (Beijing Academy of Quantum Information Sciences
    Hefei National Laboratory)

  • Zhonghua Bai

    (Tsinghua University)

  • Zechao Wang

    (Tsinghua University
    Ji Hua Laboratory)

  • Shuxu Hu

    (Tsinghua University)

  • Hong-Yi Xie

    (Beijing Academy of Quantum Information Sciences)

  • Xiaopeng Hu

    (Tsinghua University)

  • Jian Cui

    (Beijing Academy of Quantum Information Sciences)

  • Miaoling Huang

    (Beijing Academy of Quantum Information Sciences)

  • Jianhao Chen

    (Beijing Academy of Quantum Information Sciences
    Peking University)

  • Ying Ding

    (Chinese Academy of Sciences)

  • Lin Zhao

    (Chinese Academy of Sciences)

  • Xinyan Li

    (Chinese Academy of Sciences)

  • Qinghua Zhang

    (Chinese Academy of Sciences)

  • Lin Gu

    (Tsinghua University
    Chinese Academy of Sciences)

  • X. J. Zhou

    (Chinese Academy of Sciences)

  • Jing Zhu

    (Tsinghua University
    Ji Hua Laboratory)

  • Ding Zhang

    (Tsinghua University
    Beijing Academy of Quantum Information Sciences
    RIKEN Center for Emergent Matter Science (CEMS))

  • Qi-Kun Xue

    (Tsinghua University
    Beijing Academy of Quantum Information Sciences
    Southern University of Science and Technology)

Abstract

Josephson tunneling in twisted cuprate junctions provides a litmus test for the pairing symmetry, which is fundamental for understanding the microscopic mechanism of high temperature superconductivity. This issue is rekindled by experimental advances in van der Waals stacking and the proposal of an emergent d+id-wave. So far, all experiments have been carried out on Bi2Sr2CaCu2O8+x (Bi-2212) with double CuO2 planes but show controversial results. Here, we investigate junctions made of Bi2Sr2-xLaxCuO6+y (Bi-2201) with single CuO2 planes. Our on-site cold stacking technique ensures uncompromised crystalline quality and stoichiometry at the interface. Junctions with carefully calibrated twist angles around 45° show strong Josephson tunneling and conventional temperature dependence. Furthermore, we observe standard Fraunhofer diffraction patterns and integer Fiske steps in a junction with a twist angle of 45.0±0.2°. Together, these results pose strong constraints on the d or d+id-wave pairing and suggest an indispensable isotropic pairing component.

Suggested Citation

  • Heng Wang & Yuying Zhu & Zhonghua Bai & Zechao Wang & Shuxu Hu & Hong-Yi Xie & Xiaopeng Hu & Jian Cui & Miaoling Huang & Jianhao Chen & Ying Ding & Lin Zhao & Xinyan Li & Qinghua Zhang & Lin Gu & X. J, 2023. "Prominent Josephson tunneling between twisted single copper oxide planes of Bi2Sr2-xLaxCuO6+y," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40525-1
    DOI: 10.1038/s41467-023-40525-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40525-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40525-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fang Wang & Johan Biscaras & Andreas Erb & Abhay Shukla, 2021. "Superconductor-insulator transition in space charge doped one unit cell Bi2.1Sr1.9CaCu2O8+x," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    2. Yuan Huang & Yu-Hao Pan & Rong Yang & Li-Hong Bao & Lei Meng & Hai-Lan Luo & Yong-Qing Cai & Guo-Dong Liu & Wen-Juan Zhao & Zhang Zhou & Liang-Mei Wu & Zhi-Li Zhu & Ming Huang & Li-Wei Liu & Lei Liu &, 2020. "Universal mechanical exfoliation of large-area 2D crystals," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Da Jiang & Tao Hu & Lixing You & Qiao Li & Ang Li & Haomin Wang & Gang Mu & Zhiying Chen & Haoran Zhang & Guanghui Yu & Jie Zhu & Qiujuan Sun & Chengtian Lin & Hong Xiao & Xiaoming Xie & Mianheng Jian, 2014. "High-Tc superconductivity in ultrathin Bi2Sr2CaCu2O8+x down to half-unit-cell thickness by protection with graphene," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    4. Menghan Liao & Yuying Zhu & Shuxu Hu & Ruidan Zhong & John Schneeloch & Genda Gu & Ding Zhang & Qi-Kun Xue, 2022. "Little-Parks like oscillations in lightly doped cuprate superconductors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongjun Xu & Ke Jia & Yuan Huang & Fanqi Meng & Qinghua Zhang & Yu Zhang & Chen Cheng & Guibin Lan & Jing Dong & Jinwu Wei & Jiafeng Feng & Congli He & Zhe Yuan & Mingliang Zhu & Wenqing He & Caihua W, 2023. "Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Longlong Yang & Yu Yuan & Bowen Fu & Jingnan Yang & Danjie Dai & Shushu Shi & Sai Yan & Rui Zhu & Xu Han & Hancong Li & Zhanchun Zuo & Can Wang & Yuan Huang & Kuijuan Jin & Qihuang Gong & Xiulai Xu, 2023. "Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Zhuyuan Wang & Xue Yan & Qinfu Hou & Yue Liu & Xiangkang Zeng & Yuan Kang & Wang Zhao & Xuefeng Li & Shi Yuan & Ruosang Qiu & Md Hemayet Uddin & Ruoxin Wang & Yun Xia & Meipeng Jian & Yan Kang & Li Ga, 2023. "Scalable high yield exfoliation for monolayer nanosheets," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Seungjun Lee & Dongjea Seo & Sang Hyun Park & Nezhueytl Izquierdo & Eng Hock Lee & Rehan Younas & Guanyu Zhou & Milan Palei & Anthony J. Hoffman & Min Seok Jang & Christopher L. Hinkle & Steven J. Koe, 2023. "Achieving near-perfect light absorption in atomically thin transition metal dichalcogenides through band nesting," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Christoph W. Zollitsch & Safe Khan & Vu Thanh Trung Nam & Ivan A. Verzhbitskiy & Dimitrios Sagkovits & James O’Sullivan & Oscar W. Kennedy & Mara Strungaru & Elton J. G. Santos & John J. L. Morton & G, 2023. "Probing spin dynamics of ultra-thin van der Waals magnets via photon-magnon coupling," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Junpeng Zeng & Daowei He & Jingsi Qiao & Yating Li & Li Sun & Weisheng Li & Jiacheng Xie & Si Gao & Lijia Pan & Peng Wang & Yong Xu & Yun Li & Hao Qiu & Yi Shi & Jian-Bin Xu & Wei Ji & Xinran Wang, 2023. "Ultralow contact resistance in organic transistors via orbital hybridization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Ruijin Sun & Jun Deng & Xiaowei Wu & Munan Hao & Ke Ma & Yuxin Ma & Changchun Zhao & Dezhong Meng & Xiaoyu Ji & Yiyang Ding & Yu Pang & Xin Qian & Ronggui Yang & Guodong Li & Zhilin Li & Linjie Dai & , 2023. "High anisotropy in electrical and thermal conductivity through the design of aerogel-like superlattice (NaOH)0.5NbSe2," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40525-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.