IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38934-3.html
   My bibliography  Save this article

Mechanism of action for small-molecule inhibitors of triacylglycerol synthesis

Author

Listed:
  • Xuewu Sui

    (Harvard T.H. Chan School of Public Health
    Harvard Medical School
    Texas A&M University)

  • Kun Wang

    (Harvard T.H. Chan School of Public Health
    Harvard Medical School)

  • Kangkang Song

    (University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School)

  • Chen Xu

    (University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School)

  • Jiunn Song

    (Harvard T.H. Chan School of Public Health
    Harvard Medical School)

  • Chia-Wei Lee

    (Harvard T.H. Chan School of Public Health
    Harvard Medical School)

  • Maofu Liao

    (Harvard Medical School
    Southern University of Science and Technology)

  • Robert V. Farese

    (Harvard T.H. Chan School of Public Health
    Harvard Medical School
    Broad Institute of MIT and Harvard
    Memorial Sloan Kettering Cancer Center)

  • Tobias C. Walther

    (Harvard T.H. Chan School of Public Health
    Harvard Medical School
    Broad Institute of MIT and Harvard
    Memorial Sloan Kettering Cancer Center)

Abstract

Inhibitors of triacylglycerol (TG) synthesis have been developed to treat metabolism-related diseases, but we know little about their mechanisms of action. Here, we report cryo-EM structures of the TG-synthesis enzyme acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a membrane bound O-acyltransferase (MBOAT), in complex with two different inhibitors, T863 and DGAT1IN1. Each inhibitor binds DGAT1’s fatty acyl-CoA substrate binding tunnel that opens to the cytoplasmic side of the ER. T863 blocks access to the tunnel entrance, whereas DGAT1IN1 extends further into the enzyme, with an amide group interacting with more deeply buried catalytic residues. A survey of DGAT1 inhibitors revealed that this amide group may serve as a common pharmacophore for inhibition of MBOATs. The inhibitors were minimally active against the related MBOAT acyl-CoA:cholesterol acyltransferase 1 (ACAT1), yet a single-residue mutation sensitized ACAT1 for inhibition. Collectively, our studies provide a structural foundation for developing DGAT1 and other MBOAT inhibitors.

Suggested Citation

  • Xuewu Sui & Kun Wang & Kangkang Song & Chen Xu & Jiunn Song & Chia-Wei Lee & Maofu Liao & Robert V. Farese & Tobias C. Walther, 2023. "Mechanism of action for small-molecule inhibitors of triacylglycerol synthesis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38934-3
    DOI: 10.1038/s41467-023-38934-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38934-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38934-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lie Wang & Hongwu Qian & Yin Nian & Yimo Han & Zhenning Ren & Hanzhi Zhang & Liya Hu & B. V. Venkataram Prasad & Arthur Laganowsky & Nieng Yan & Ming Zhou, 2020. "Structure and mechanism of human diacylglycerol O-acyltransferase 1," Nature, Nature, vol. 581(7808), pages 329-332, May.
    2. Xuewu Sui & Kun Wang & Nina L. Gluchowski & Shane D. Elliott & Maofu Liao & Tobias C. Walther & Robert V. Farese, 2020. "Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme," Nature, Nature, vol. 581(7808), pages 323-328, May.
    3. Weinan Du & Luchang Zhang & Adina Brett-Morris & Brittany Aguila & Janos Kerner & Charles L. Hoppel & Michelle Puchowicz & Dolors Serra & Laura Herrero & Brian I. Rini & Steven Campbell & Scott M. Wel, 2017. "HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    4. Tao Long & Yingyuan Sun & Abdirahman Hassan & Xiaofeng Qi & Xiaochun Li, 2020. "Structure of nevanimibe-bound tetrameric human ACAT1," Nature, Nature, vol. 581(7808), pages 339-343, May.
    5. Yang Liu & Xiaofeng Qi & Linda Donnelly & Nadia Elghobashi-Meinhardt & Tao Long & Rich W. Zhou & Yingyuan Sun & Boyuan Wang & Xiaochun Li, 2022. "Mechanisms and inhibition of Porcupine-mediated Wnt acylation," Nature, Nature, vol. 607(7920), pages 816-822, July.
    6. Qing Zhang & Deqiang Yao & Bing Rao & Liyan Jian & Yang Chen & Kexin Hu & Ying Xia & Shaobai Li & Yafeng Shen & An Qin & Jie Zhao & Lu Zhou & Ming Lei & Xian-Cheng Jiang & Yu Cao, 2021. "The structural basis for the phospholipid remodeling by lysophosphatidylcholine acyltransferase 3," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Chengcheng Guan & Yange Niu & Si-Cong Chen & Yunlu Kang & Jing-Xiang Wu & Koji Nishi & Catherine C. Y. Chang & Ta-Yuan Chang & Tuoping Luo & Lei Chen, 2020. "Structural insights into the inhibition mechanism of human sterol O-acyltransferase 1 by a competitive inhibitor," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun Wang & Chia-Wei Lee & Xuewu Sui & Siyoung Kim & Shuhui Wang & Aidan B. Higgs & Aaron J. Baublis & Gregory A. Voth & Maofu Liao & Tobias C. Walther & Robert V. Farese, 2023. "The structure of phosphatidylinositol remodeling MBOAT7 reveals its catalytic mechanism and enables inhibitor identification," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Qing Zhang & Deqiang Yao & Bing Rao & Liyan Jian & Yang Chen & Kexin Hu & Ying Xia & Shaobai Li & Yafeng Shen & An Qin & Jie Zhao & Lu Zhou & Ming Lei & Xian-Cheng Jiang & Yu Cao, 2021. "The structural basis for the phospholipid remodeling by lysophosphatidylcholine acyltransferase 3," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Zhi Lin & Jiao Liu & Fei Long & Rui Kang & Guido Kroemer & Daolin Tang & Minghua Yang, 2022. "The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Yong Jiang & Zhong Zhuang & Wenqian Jia & Ming Xie & Zhengkui Zhou & Jing Tang & Hao Bai & Guobin Chang & Guohong Chen & Shuisheng Hou, 2022. "Comparative Transcriptome Analysis Reveals the Key Genes Involved in Lipid Deposition in Pekin Ducks ( Anas platyrhynchos domesticus )," Agriculture, MDPI, vol. 12(11), pages 1-19, October.
    5. Wenhao Cui & Yange Niu & Zejian Sun & Rui Liu & Lei Chen, 2023. "Structures of human SGLT in the occluded state reveal conformational changes during sugar transport," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Iris D. Zelnik & Beatriz Mestre & Jonathan J. Weinstein & Tamir Dingjan & Stav Izrailov & Shifra Ben-Dor & Sarel J. Fleishman & Anthony H. Futerman, 2023. "Computational design and molecular dynamics simulations suggest the mode of substrate binding in ceramide synthases," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    7. Yange Niu & Wenhao Cui & Rui Liu & Sanshan Wang & Han Ke & Xiaoguang Lei & Lei Chen, 2022. "Structural mechanism of SGLT1 inhibitors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Dianne Lumaquin-Yin & Emily Montal & Eleanor Johns & Arianna Baggiolini & Ting-Hsiang Huang & Yilun Ma & Charlotte LaPlante & Shruthy Suresh & Lorenz Studer & Richard M. White, 2023. "Lipid droplets are a metabolic vulnerability in melanoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Lie Wang & Ming Zhou, 2023. "Structure of a eukaryotic cholinephosphotransferase-1 reveals mechanisms of substrate recognition and catalysis," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38934-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.