IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38451-3.html
   My bibliography  Save this article

A local water molecular-heating strategy for near-infrared long-lifetime imaging-guided photothermal therapy of glioblastoma

Author

Listed:
  • Dongkyu Kang

    (Hanyang University)

  • Hyung Shik Kim

    (Hanyang University)

  • Soohyun Han

    (Hanyang University)

  • Yeonju Lee

    (Hanyang University)

  • Young-Pil Kim

    (Hanyang University
    Hanyang University
    Hanyang University
    Hanyang University)

  • Dong Yun Lee

    (Hanyang University
    Hanyang University
    Hanyang University
    Elixir Pharmatech Inc.)

  • Joonseok Lee

    (Hanyang University
    Hanyang University)

Abstract

Owing to the strong absorption of water in the near-infrared (NIR) region near 1.0 μm, this wavelength is considered unsuitable as an imaging and analytical signal in biological environments. However, 1.0 μm NIR can be converted into heat and used as a local water-molecular heating strategy for the photothermal therapy of biological tissues. Herein, we describe a Nd-Yb co-doped nanomaterial (water-heating nanoparticles (NPs)) as strong 1.0 μm emissive NPs to target the absorption band of water. Furthermore, introducing Tm ions into the water-heating NPs improve the NIR lifetime, enabling the development of a NIR imaging-guided water-heating probe (water-heating NIR NPs). In the glioblastoma multiforme male mouse model, tumor-targeted water-heating NIR NPs reduce the tumor volume by 78.9% in the presence of high-resolution intracranial NIR long-lifetime imaging. Hence, water-heating NIR NPs can be used as a promising nanomaterial for imaging and photothermal ablation in deep-tissue-bearing tumor therapy.

Suggested Citation

  • Dongkyu Kang & Hyung Shik Kim & Soohyun Han & Yeonju Lee & Young-Pil Kim & Dong Yun Lee & Joonseok Lee, 2023. "A local water molecular-heating strategy for near-infrared long-lifetime imaging-guided photothermal therapy of glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38451-3
    DOI: 10.1038/s41467-023-38451-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38451-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38451-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shihui Wen & Jiajia Zhou & Kezhi Zheng & Artur Bednarkiewicz & Xiaogang Liu & Dayong Jin, 2018. "Advances in highly doped upconversion nanoparticles," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. Ying Zhang & Raghava N. Sriramaneni & Paul A. Clark & Justin C. Jagodinsky & Mingzhou Ye & Wonjong Jin & Yuyuan Wang & Amber Bates & Caroline P. Kerr & Trang Le & Raad Allawi & Xiuxiu Wang & Ruosen Xi, 2022. "Multifunctional nanoparticle potentiates the in situ vaccination effect of radiation therapy and enhances response to immune checkpoint blockade," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. C. Albert & L. Bracaglia & A. Koide & J. DiRito & T. Lysyy & L. Harkins & C. Edwards & O. Richfield & J. Grundler & K. Zhou & E. Denbaum & G. Ketavarapu & T. Hattori & S. Perincheri & J. Langford & A., 2022. "Monobody adapter for functional antibody display on nanoparticles for adaptable targeted delivery applications," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Bin Zhou & Bing Tang & Chuang Zhang & Changyun Qin & Zhanjun Gu & Ying Ma & Tianyou Zhai & Jiannian Yao, 2020. "Enhancing multiphoton upconversion through interfacial energy transfer in multilayered nanoparticles," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Zhang & Pengpeng Lei & Xiaohui Zhu & Yong Zhang, 2021. "Full shell coating or cation exchange enhances luminescence," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Yanxin Zhang & Rongrong Wen & Jialing Hu & Daoming Guan & Xiaochen Qiu & Yunxiang Zhang & Daniel S. Kohane & Qian Liu, 2022. "Enhancement of single upconversion nanoparticle imaging by topologically segregated core-shell structure with inward energy migration," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Long Yan & Jinshu Huang & Zhengce An & Qinyuan Zhang & Bo Zhou, 2024. "Spatiotemporal control of photochromic upconversion through interfacial energy transfer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Ansari, Anees A. & Sillanpää, Mika, 2021. "Advancement in upconversion nanoparticles based NIR-driven photocatalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38451-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.