IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37788-z.html
   My bibliography  Save this article

Addressable and adaptable intercellular communication via DNA messaging

Author

Listed:
  • John P. Marken

    (California Institute of Technology)

  • Richard M. Murray

    (California Institute of Technology)

Abstract

Engineered consortia are a major research focus for synthetic biologists because they can implement sophisticated behaviors inaccessible to single-strain systems. However, this functional capacity is constrained by their constituent strains’ ability to engage in complex communication. DNA messaging, by enabling information-rich channel-decoupled communication, is a promising candidate architecture for implementing complex communication. But its major advantage, its messages’ dynamic mutability, is still unexplored. We develop a framework for addressable and adaptable DNA messaging that leverages all three of these advantages and implement it using plasmid conjugation in E. coli. Our system can bias the transfer of messages to targeted receiver strains by 100- to 1000-fold, and their recipient lists can be dynamically updated in situ to control the flow of information through the population. This work lays the foundation for future developments that further utilize the unique advantages of DNA messaging to engineer previously-inaccessible levels of complexity into biological systems.

Suggested Citation

  • John P. Marken & Richard M. Murray, 2023. "Addressable and adaptable intercellular communication via DNA messaging," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37788-z
    DOI: 10.1038/s41467-023-37788-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37788-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37788-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brian J. Caliando & Christopher A. Voigt, 2015. "Targeted DNA degradation using a CRISPR device stably carried in the host genome," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    2. Sergi Regot & Javier Macia & Núria Conde & Kentaro Furukawa & Jimmy Kjellén & Tom Peeters & Stefan Hohmann & Eulàlia de Nadal & Francesc Posas & Ricard Solé, 2011. "Distributed biological computation with multicellular engineered networks," Nature, Nature, vol. 469(7329), pages 207-211, January.
    3. Sonja Billerbeck & James Brisbois & Neta Agmon & Miguel Jimenez & Jasmine Temple & Michael Shen & Jef D. Boeke & Virginia W. Cornish, 2018. "A scalable peptide-GPCR language for engineering multicellular communication," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    4. Alex J. H. Fedorec & Behzad D. Karkaria & Michael Sulu & Chris P. Barnes, 2021. "Single strain control of microbial consortia," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Allison J. Lopatkin & Hannah R. Meredith & Jaydeep K. Srimani & Connor Pfeiffer & Rick Durrett & Lingchong You, 2017. "Persistence and reversal of plasmid-mediated antibiotic resistance," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    6. Rory L. Williams & Richard M. Murray, 2022. "Integrase-mediated differentiation circuits improve evolutionary stability of burdensome and toxic functions in E. coli," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Lewis Grozinger & Martyn Amos & Thomas E. Gorochowski & Pablo Carbonell & Diego A. Oyarzún & Ruud Stoof & Harold Fellermann & Paolo Zuliani & Huseyin Tas & Angel Goñi-Moreno, 2019. "Pathways to cellular supremacy in biocomputing," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    8. Bin Shao & Jayan Rammohan & Daniel A. Anderson & Nina Alperovich & David Ross & Christopher A. Voigt, 2021. "Single-cell measurement of plasmid copy number and promoter activity," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Agathe Couturier & Chloé Virolle & Kelly Goldlust & Annick Berne-Dedieu & Audrey Reuter & Sophie Nolivos & Yoshiharu Yamaichi & Sarah Bigot & Christian Lesterlin, 2023. "Real-time visualisation of the intracellular dynamics of conjugative plasmid transfer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Nicolas Kylilis & Zoltan A. Tuza & Guy-Bart Stan & Karen M. Polizzi, 2018. "Tools for engineering coordinated system behaviour in synthetic microbial consortia," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Poudel, Niranjan & Singleton, Patrick A., 2022. "Preferences for roundabout attributes among US bicyclists: A discrete choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 316-329.
    3. Lei Pei & Michele Garfinkel & Markus Schmidt, 2022. "Bottlenecks and opportunities for synthetic biology biosafety standards," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    4. Michael B. Sheets & Nathan Tague & Mary J. Dunlop, 2023. "An optogenetic toolkit for light-inducible antibiotic resistance," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Rohan Maddamsetti & Yi Yao & Teng Wang & Junheng Gao & Vincent T. Huang & Grayson S. Hamrick & Hye-In Son & Lingchong You, 2024. "Duplicated antibiotic resistance genes reveal ongoing selection and horizontal gene transfer in bacteria," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Emil D. Jensen & Marcus Deichmann & Xin Ma & Rikke U. Vilandt & Giovanni Schiesaro & Marie B. Rojek & Bettina Lengger & Line Eliasson & Justin M. Vento & Deniz Durmusoglu & Sandie P. Hovmand & Ibrahim, 2022. "Engineered cell differentiation and sexual reproduction in probiotic and mating yeasts," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Javier Macia & Romilde Manzoni & Núria Conde & Arturo Urrios & Eulàlia de Nadal & Ricard Solé & Francesc Posas, 2016. "Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-24, February.
    8. Xuanji Li & Asker Brejnrod & Jonathan Thorsen & Trine Zachariasen & Urvish Trivedi & Jakob Russel & Gisle Alberg Vestergaard & Jakob Stokholm & Morten Arendt Rasmussen & Søren Johannes Sørensen, 2023. "Differential responses of the gut microbiome and resistome to antibiotic exposures in infants and adults," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Karel Miettinen & Nattawat Leelahakorn & Aldo Almeida & Yong Zhao & Lukas R. Hansen & Iben E. Nikolajsen & Jens B. Andersen & Michael Givskov & Dan Staerk & Søren Bak & Sotirios C. Kampranis, 2022. "A GPCR-based yeast biosensor for biomedical, biotechnological, and point-of-use cannabinoid determination," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Shiben Zhu & Juken Hong & Teng Wang, 2024. "Horizontal gene transfer is predicted to overcome the diversity limit of competing microbial species," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Ahmed A. Agiza & Kady Oakley & Jacob K. Rosenstein & Brenda M. Rubenstein & Eunsuk Kim & Marc Riedel & Sherief Reda, 2023. "Digital circuits and neural networks based on acid-base chemistry implemented by robotic fluid handling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Miles V. Rouches & Yasu Xu & Louis Brian Georges Cortes & Guillaume Lambert, 2022. "A plasmid system with tunable copy number," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Dalton R. George & Mark Danciu & Peter W. Davenport & Matthew R. Lakin & James Chappell & Emma K. Frow, 2024. "A bumpy road ahead for genetic biocontainment," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    14. Carlos Barajas & Hsin-Ho Huang & Jesse Gibson & Luis Sandoval & Domitilla Vecchio, 2022. "Feedforward growth rate control mitigates gene activation burden," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    16. Carolyn N. Bayer & Maja Rennig & Anja K. Ehrmann & Morten H. H. Nørholm, 2021. "A standardized genome architecture for bacterial synthetic biology (SEGA)," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    17. Yinyin Ma & Josep Ramoneda & David R. Johnson, 2023. "Timing of antibiotic administration determines the spread of plasmid-encoded antibiotic resistance during microbial range expansion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Brian D. Huang & Dowan Kim & Yongjoon Yu & Corey J. Wilson, 2024. "Engineering intelligent chassis cells via recombinase-based MEMORY circuits," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. J. Carlos R. Hernandez-Beltran & Jerónimo Rodríguez-Beltrán & Oscar Bruno Aguilar-Luviano & Jesús Velez-Santiago & Octavio Mondragón-Palomino & R. Craig MacLean & Ayari Fuentes-Hernández & Alvaro San , 2024. "Plasmid-mediated phenotypic noise leads to transient antibiotic resistance in bacteria," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Stefan A. Hoffmann & Yizhi Cai, 2024. "Engineering stringent genetic biocontainment of yeast with a protein stability switch," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37788-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.