IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37661-z.html
   My bibliography  Save this article

DeMAG predicts the effects of variants in clinically actionable genes by integrating structural and evolutionary epistatic features

Author

Listed:
  • Federica Luppino

    (Max Planck Institute of Molecular Cell Biology and Genetics
    Center for Systems Biology Dresden)

  • Ivan A. Adzhubei

    (Harvard Medical School
    Harvard Medical School)

  • Christopher A. Cassa

    (Harvard Medical School)

  • Agnes Toth-Petroczy

    (Max Planck Institute of Molecular Cell Biology and Genetics
    Center for Systems Biology Dresden
    Cluster of Excellence Physics of Life, TU Dresden)

Abstract

Despite the increasing use of genomic sequencing in clinical practice, the interpretation of rare genetic variants remains challenging even in well-studied disease genes, resulting in many patients with Variants of Uncertain Significance (VUSs). Computational Variant Effect Predictors (VEPs) provide valuable evidence in variant assessment, but they are prone to misclassifying benign variants, contributing to false positives. Here, we develop Deciphering Mutations in Actionable Genes (DeMAG), a supervised classifier for missense variants trained using extensive diagnostic data available in 59 actionable disease genes (American College of Medical Genetics and Genomics Secondary Findings v2.0, ACMG SF v2.0). DeMAG improves performance over existing VEPs by reaching balanced specificity (82%) and sensitivity (94%) on clinical data, and includes a novel epistatic feature, the ‘partners score’, which leverages evolutionary and structural partnerships of residues. The ‘partners score’ provides a general framework for modeling epistatic interactions, integrating both clinical and functional information. We provide our tool and predictions for all missense variants in 316 clinically actionable disease genes (demag.org) to facilitate the interpretation of variants and improve clinical decision-making.

Suggested Citation

  • Federica Luppino & Ivan A. Adzhubei & Christopher A. Cassa & Agnes Toth-Petroczy, 2023. "DeMAG predicts the effects of variants in clinically actionable genes by integrating structural and evolutionary epistatic features," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37661-z
    DOI: 10.1038/s41467-023-37661-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37661-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37661-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    3. Michael S. Breen & Carsten Kemena & Peter K. Vlasov & Cedric Notredame & Fyodor A. Kondrashov, 2012. "Epistasis as the primary factor in molecular evolution," Nature, Nature, vol. 490(7421), pages 535-538, October.
    4. Konrad J. Karczewski & Laurent C. Francioli & Grace Tiao & Beryl B. Cummings & Jessica Alföldi & Qingbo Wang & Ryan L. Collins & Kristen M. Laricchia & Andrea Ganna & Daniel P. Birnbaum & Laura D. Gau, 2020. "The mutational constraint spectrum quantified from variation in 141,456 humans," Nature, Nature, vol. 581(7809), pages 434-443, May.
    5. Gregory M. Findlay & Riza M. Daza & Beth Martin & Melissa D. Zhang & Anh P. Leith & Molly Gasperini & Joseph D. Janizek & Xingfan Huang & Lea M. Starita & Jay Shendure, 2018. "Accurate classification of BRCA1 variants with saturation genome editing," Nature, Nature, vol. 562(7726), pages 217-222, October.
    6. Fraley C. & Raftery A.E., 2002. "Model-Based Clustering, Discriminant Analysis, and Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 611-631, June.
    7. Frank J. Poelwijk & Michael Socolich & Rama Ranganathan, 2019. "Learning the pattern of epistasis linking genotype and phenotype in a protein," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukas Gerasimavicius & Benjamin J. Livesey & Joseph A. Marsh, 2022. "Loss-of-function, gain-of-function and dominant-negative mutations have profoundly different effects on protein structure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Kian Hong Kock & Patrick K. Kimes & Stephen S. Gisselbrecht & Sachi Inukai & Sabrina K. Phanor & James T. Anderson & Gayatri Ramakrishnan & Colin H. Lipper & Dongyuan Song & Jesse V. Kurland & Julia M, 2024. "DNA binding analysis of rare variants in homeodomains reveals homeodomain specificity-determining residues," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Johanna M. Kohlmayr & Gernot F. Grabner & Anna Nusser & Anna Höll & Verina Manojlović & Bettina Halwachs & Sarah Masser & Evelyne Jany-Luig & Hanna Engelke & Robert Zimmermann & Ulrich Stelzl, 2024. "Mutational scanning pinpoints distinct binding sites of key ATGL regulators in lipolysis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Elizaveta Lyapina & Egor Marin & Anastasiia Gusach & Philipp Orekhov & Andrey Gerasimov & Aleksandra Luginina & Daniil Vakhrameev & Margarita Ergasheva & Margarita Kovaleva & Georgii Khusainov & Polin, 2022. "Structural basis for receptor selectivity and inverse agonism in S1P5 receptors," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. David Ding & Ada Y. Shaw & Sam Sinai & Nathan Rollins & Noam Prywes & David F. Savage & Michael T. Laub & Debora S. Marks, 2024. "Protein design using structure-based residue preferences," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Bian Li & Dan M. Roden & John A. Capra, 2022. "The 3D mutational constraint on amino acid sites in the human proteome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Matt C. Danzi & Maike F. Dohrn & Sarah Fazal & Danique Beijer & Adriana P. Rebelo & Vivian Cintra & Stephan Züchner, 2023. "Deep structured learning for variant prioritization in Mendelian diseases," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Sash Lopaticki & Robyn McConville & Alan John & Niall Geoghegan & Shihab Deen Mohamed & Lisa Verzier & Ryan W. J. Steel & Cindy Evelyn & Matthew T. O’Neill & Niccolay Madiedo Soler & Nichollas E. Scot, 2022. "Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Radoslaw Pluta & Eric Aragón & Nicholas A. Prescott & Lidia Ruiz & Rebeca A. Mees & Blazej Baginski & Julia R. Flood & Pau Martin-Malpartida & Joan Massagué & Yael David & Maria J. Macias, 2022. "Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Fan Lu & Liang Zhu & Thomas Bromberger & Jun Yang & Qiannan Yang & Jianmin Liu & Edward F. Plow & Markus Moser & Jun Qin, 2022. "Mechanism of integrin activation by talin and its cooperation with kindlin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Kiran Krishnamachari & Dylan Lu & Alexander Swift-Scott & Anuar Yeraliyev & Kayla Lee & Weitai Huang & Sim Ngak Leng & Anders Jacobsen Skanderup, 2022. "Accurate somatic variant detection using weakly supervised deep learning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Jasjot Singh & Hadeer Elhabashy & Pathma Muthukottiappan & Markus Stepath & Martin Eisenacher & Oliver Kohlbacher & Volkmar Gieselmann & Dominic Winter, 2022. "Cross-linking of the endolysosomal system reveals potential flotillin structures and cargo," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37661-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.