IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37656-w.html
   My bibliography  Save this article

Engineering tumor-specific gene nanomedicine to recruit and activate T cells for enhanced immunotherapy

Author

Listed:
  • Yue Wang

    (South China University of Technology, Guangzhou International Campus)

  • Shi-Kun Zhou

    (South China University of Technology, Guangzhou International Campus)

  • Yan Wang

    (South China University of Technology)

  • Zi-Dong Lu

    (South China University of Technology)

  • Yue Zhang

    (South China University of Technology, Guangzhou International Campus
    South China University of Technology)

  • Cong-Fei Xu

    (South China University of Technology, Guangzhou International Campus
    South China University of Technology
    South China University of Technology)

  • Jun Wang

    (South China University of Technology, Guangzhou International Campus
    South China University of Technology
    South China University of Technology)

Abstract

PD-1/PD-L1 blockade therapy that eliminates T-cell inhibition signals is successful, but poor benefits are often observed. Increasing T-cell infiltration and quantity of PD-1/PD-L1 inhibitors in tumor can improve efficacy but remains challenging. Here, we devise tumor-specific gene nanomedicines to mobilize tumor cells to secrete CXCL9 (T-cell chemokine) and anti-PD-L1 scFv (αPD-L1, PD-L1 blocking agent) for enhanced immunotherapy. The tyrosinase promoter-driven NPTyr-C9AP can specifically co-express CXCL9 and αPD-L1 in melanoma cells, thereby forming a CXCL9 gradient for T-cell recruitment and high intratumoral αPD-L1 concentration for enhancing T-cell activation. As a result, NPTyr-C9AP shows strong antimelanoma effects. Moreover, specific co-expression of CXCL9 and αPD-L1 in various tumor cells is achieved by replacing the tyrosinase promoter of NPTyr-C9AP with a survivin promoter, which increases T-cell infiltration and activation and therapeutic efficacy in multiple tumors in female mice. This study provides a strategy to maximize the immunotherapeutic outcome regardless of the heterogeneous tumor microenvironment.

Suggested Citation

  • Yue Wang & Shi-Kun Zhou & Yan Wang & Zi-Dong Lu & Yue Zhang & Cong-Fei Xu & Jun Wang, 2023. "Engineering tumor-specific gene nanomedicine to recruit and activate T cells for enhanced immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37656-w
    DOI: 10.1038/s41467-023-37656-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37656-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37656-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cheng-Tao Jiang & Kai-Ge Chen & An Liu & Hua Huang & Ya-Nan Fan & Dong-Kun Zhao & Qian-Ni Ye & Hou-Bing Zhang & Cong-Fei Xu & Song Shen & Meng-Hua Xiong & Jin-Zhi Du & Xian-Zhu Yang & Jun Wang, 2021. "Immunomodulating nano-adaptors potentiate antibody-based cancer immunotherapy," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Chunbai He & Xiaopin Duan & Nining Guo & Christina Chan & Christopher Poon & Ralph R. Weichselbaum & Wenbin Lin, 2016. "Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy," Nature Communications, Nature, vol. 7(1), pages 1-12, November.
    3. Caroline Robert, 2020. "A decade of immune-checkpoint inhibitors in cancer therapy," Nature Communications, Nature, vol. 11(1), pages 1-3, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pooja Middha & Rohit Thummalapalli & Michael J. Betti & Lydia Yao & Zoe Quandt & Karmugi Balaratnam & Cosmin A. Bejan & Eduardo Cardenas & Christina J. Falcon & David M. Faleck & Matthew A. Gubens & S, 2024. "Polygenic risk score for ulcerative colitis predicts immune checkpoint inhibitor-mediated colitis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Ziyang Cao & Dongdong Li & Liang Zhao & Mengting Liu & Pengyue Ma & Yingli Luo & Xianzhu Yang, 2022. "Bioorthogonal in situ assembly of nanomedicines as drug depots for extracellular drug delivery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Nandini Pal Basak & Kowshik Jaganathan & Biswajit Das & Oliyarasi Muthusamy & Rajashekar M & Ritu Malhotra & Amit Samal & Moumita Nath & Ganesh MS & Amritha Prabha Shankar & Prakash BV & Vijay Pillai , 2024. "Tumor histoculture captures the dynamic interactions between tumor and immune components in response to anti-PD1 in head and neck cancer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Jianting Long & Xihe Chen & Mian He & Shudan Ou & Yunhe Zhao & Qingjia Yan & Minjun Ma & Jingyu Chen & Xuping Qin & Xiangjun Zhou & Junjun Chu & Yanyan Han, 2024. "HLA-class II restricted TCR targeting human papillomavirus type 18 E7 induces solid tumor remission in mice," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37656-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.