IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51096-0.html
   My bibliography  Save this article

ITGB6 modulates resistance to anti-CD276 therapy in head and neck cancer by promoting PF4+ macrophage infiltration

Author

Listed:
  • Caihua Zhang

    (Sun Yat-sen University)

  • Kang Li

    (Sun Yat-sen University)

  • Hongzhang Zhu

    (Sun Yat-sen University)

  • Maosheng Cheng

    (Sun Yat-sen University)

  • Shuang Chen

    (Sun Yat-sen University)

  • Rongsong Ling

    (Shenzhen University)

  • Cheng Wang

    (Sun Yat-sen University)

  • Demeng Chen

    (Sun Yat-sen University)

Abstract

Enoblituzumab, an immunotherapeutic agent targeting CD276, shows both safety and efficacy in activating T cells and oligodendrocyte-like cells against various cancers. Preclinical studies and mouse models suggest that therapies targeting CD276 may outperform PD1/PD-L1 blockade. However, data from mouse models indicate a significant non-responsive population to anti-CD276 treatment, with the mechanisms of resistance still unclear. In this study, we evaluate the activity of anti-CD276 antibodies in a chemically-induced murine model of head and neck squamous cell carcinoma. Using models of induced and orthotopic carcinogenesis, we identify ITGB6 as a key gene mediating differential responses to anti-CD276 treatment. Through single-cell RNA sequencing and gene-knockout mouse models, we find that ITGB6 regulates the expression of the tumor-associated chemokine CX3CL1, which recruits and activates PF4+ macrophages that express high levels of CX3CR1. Inhibition of the CX3CL1-CX3CR1 axis suppresses the infiltration and secretion of CXCL16 by PF4+ macrophages, thereby reinvigorating cytotoxic CXCR6+ CD8+ T cells and enhancing sensitivity to anti-CD276 treatment. Further investigations demonstrate that inhibiting ITGB6 restores sensitivity to PD1 antibodies in mice resistant to anti-PD1 treatment. In summary, our research reveals a resistance mechanism associated with immune checkpoint inhibitor therapy and identifies potential targets to overcome resistance in cancer treatment.

Suggested Citation

  • Caihua Zhang & Kang Li & Hongzhang Zhu & Maosheng Cheng & Shuang Chen & Rongsong Ling & Cheng Wang & Demeng Chen, 2024. "ITGB6 modulates resistance to anti-CD276 therapy in head and neck cancer by promoting PF4+ macrophage infiltration," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51096-0
    DOI: 10.1038/s41467-024-51096-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51096-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51096-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sanjeev Mariathasan & Shannon J. Turley & Dorothee Nickles & Alessandra Castiglioni & Kobe Yuen & Yulei Wang & Edward E. Kadel III & Hartmut Koeppen & Jillian L. Astarita & Rafael Cubas & Suchit Jhunj, 2018. "TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells," Nature, Nature, vol. 554(7693), pages 544-548, February.
    2. Caroline Robert, 2020. "A decade of immune-checkpoint inhibitors in cancer therapy," Nature Communications, Nature, vol. 11(1), pages 1-3, December.
    3. Suoqin Jin & Christian F. Guerrero-Juarez & Lihua Zhang & Ivan Chang & Raul Ramos & Chen-Hsiang Kuan & Peggy Myung & Maksim V. Plikus & Qing Nie, 2021. "Inference and analysis of cell-cell communication using CellChat," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    4. Icia Santos-Zas & Jeremie Lemarié & Ivana Zlatanova & Marine Cachanado & Jean-Christophe Seghezzi & Hakim Benamer & Pascal Goube & Marie Vandestienne & Raphael Cohen & Maya Ezzo & Vincent Duval & Yuji, 2021. "Cytotoxic CD8+ T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Zhiyong Wang & Victoria H. Wu & Michael M. Allevato & Mara Gilardi & Yudou He & Juan Luis Callejas-Valera & Lynn Vitale-Cross & Daniel Martin & Panomwat Amornphimoltham & James Mcdermott & Bryan S. Yu, 2019. "Syngeneic animal models of tobacco-associated oral cancer reveal the activity of in situ anti-CTLA-4," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    6. Michael Dudek & Dominik Pfister & Sainitin Donakonda & Pamela Filpe & Annika Schneider & Melanie Laschinger & Daniel Hartmann & Norbert Hüser & Philippa Meiser & Felix Bayerl & Donato Inverso & Jennif, 2021. "Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH," Nature, Nature, vol. 592(7854), pages 444-449, April.
    7. Olivier Demaria & Stéphanie Cornen & Marc Daëron & Yannis Morel & Ruslan Medzhitov & Eric Vivier, 2019. "Publisher Correction: Harnessing innate immunity in cancer therapy," Nature, Nature, vol. 576(7785), pages 3-3, December.
    8. Olivier Demaria & Stéphanie Cornen & Marc Daëron & Yannis Morel & Ruslan Medzhitov & Eric Vivier, 2019. "Harnessing innate immunity in cancer therapy," Nature, Nature, vol. 574(7776), pages 45-56, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengxue Zhou & Jiaxin Wang & Jiaxing Pan & Hui Wang & Lujia Huang & Bo Hou & Yi Lai & Fengyang Wang & Qingxiang Guan & Feng Wang & Zhiai Xu & Haijun Yu, 2023. "Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Hikaru Hayashi & Sayaka Seki & Takeshi Tomita & Masayoshi Kato & Norihiro Ashihara & Tokuhiro Chano & Hideki Sanjo & Miwa Kawade & Chenhui Yan & Hiroki Sakai & Hidenori Tomida & Miyuki Tanaka & Mai Iw, 2025. "Synthetic short mRNA prevents metastasis via innate-adaptive immunity," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    3. Yuedong Guo & Qunqun Bao & Ping Hu & Jianlin Shi, 2023. "Nanomedicine-based co-delivery of a calcium channel inhibitor and a small molecule targeting CD47 for lung cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Katrin Rabold & Martijn Zoodsma & Inge Grondman & Yunus Kuijpers & Manita Bremmers & Martin Jaeger & Bowen Zhang & Willemijn Hobo & Han J. Bonenkamp & Johannes H. W. Wilt & Marcel J. R. Janssen & Lenn, 2022. "Reprogramming of myeloid cells and their progenitors in patients with non-medullary thyroid carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Qian-Ni Ye & Long Zhu & Jie Liang & Dong-Kun Zhao & Tai-Yu Tian & Ya-Nan Fan & Si-Yi Ye & Hua Liu & Xiao-Yi Huang & Zhi-Ting Cao & Song Shen & Jun Wang, 2024. "Orchestrating NK and T cells via tri-specific nano-antibodies for synergistic antitumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Agnes Forsthuber & Bertram Aschenbrenner & Ana Korosec & Tina Jacob & Karl Annusver & Natalia Krajic & Daria Kholodniuk & Sophie Frech & Shaohua Zhu & Kim Purkhauser & Katharina Lipp & Franziska Werne, 2024. "Cancer-associated fibroblast subtypes modulate the tumor-immune microenvironment and are associated with skin cancer malignancy," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Yu-Hsuan Chen & Han-Hsiun Chen & Won-Jing Wang & Hsin-Yi Chen & Wei-Syun Huang & Chien-Han Kao & Sin-Rong Lee & Nai Yang Yeat & Ruei-Liang Yan & Shu-Jou Chan & Kuen-Phon Wu & Ruey-Hwa Chen, 2023. "TRABID inhibition activates cGAS/STING-mediated anti-tumor immunity through mitosis and autophagy dysregulation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Eric H. Bent & Luis R. Millán-Barea & Iris Zhuang & Daniel R. Goulet & Julia Fröse & Michael T. Hemann, 2021. "Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    9. Levi Hijfte & Marjolein Geurts & Iris Heer & Santoesha A. Ghisai & Hayri E. Balcioglu & Youri Hoogstrate & Wies R. Vallentgoed & Rania Head & Rosa Luning & Thierry Bosch & Bart Westerman & Pieter Wess, 2025. "Gemistocytic tumor cells programmed for glial scarring characterize T cell confinement in IDH-mutant astrocytoma," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    10. Hugo Croizer & Rana Mhaidly & Yann Kieffer & Geraldine Gentric & Lounes Djerroudi & Renaud Leclere & Floriane Pelon & Catherine Robley & Mylene Bohec & Arnaud Meng & Didier Meseure & Emanuela Romano &, 2024. "Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-28, December.
    11. Marina T. Broz & Emily Y. Ko & Kristin Ishaya & Jinfen Xiao & Marco Simone & Xen Ping Hoi & Roberta Piras & Basia Gala & Fernando H. G. Tessaro & Anja Karlstaedt & Sandra Orsulic & Amanda W. Lund & Ke, 2024. "Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in soft-tissue sarcomas," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Yonger Xue & Xucheng Hou & Yichen Zhong & Yuebao Zhang & Shi Du & Diana D. Kang & Leiming Wang & Chang Wang & Haoyuan Li & Siyu Wang & Zhengwei Liu & Meng Tian & Kaiyuan Guo & Dinglingge Cao & Binbin , 2025. "LNP-RNA-mediated antigen presentation leverages SARS-CoV-2-specific immunity for cancer treatment," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    13. Xiaochen Wang & Maosheng Cheng & Shuang Chen & Caihua Zhang & Rongsong Ling & Shuqing Qiu & Ke Chen & Bin Zhou & Qiuli Li & Wenbin Lei & Demeng Chen, 2025. "Resistance to anti-LAG-3 plus anti-PD-1 therapy in head and neck cancer is mediated by Sox9+ tumor cells interaction with Fpr1+ neutrophils," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    14. Hong Yuen Wong & Quanhu Sheng & Amanda B. Hesterberg & Sarah Croessmann & Brenda L. Rios & Khem Giri & Jorgen Jackson & Adam X. Miranda & Evan Watkins & Kerry R. Schaffer & Meredith Donahue & Elizabet, 2022. "Single cell analysis of cribriform prostate cancer reveals cell intrinsic and tumor microenvironmental pathways of aggressive disease," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    15. Mike B. Barnkob & Yale S. Michaels & Violaine André & Philip S. Macklin & Uzi Gileadi & Salvatore Valvo & Margarida Rei & Corinna Kulicke & Ji-Li Chen & Vitul Jain & Victoria K. Woodcock & Huw Colin-Y, 2024. "Semaphorin 3A causes immune suppression by inducing cytoskeletal paralysis in tumour-specific CD8+ T cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Yanchuan Li & Huamei Li & Cheng Peng & Ge Meng & Yijun Lu & Honglin Liu & Li Cui & Huan Zhou & Zhu Xu & Lingyun Sun & Lihong Liu & Qing Xiong & Beicheng Sun & Shiping Jiao, 2024. "Unraveling the spatial organization and development of human thymocytes through integration of spatial transcriptomics and single-cell multi-omics profiling," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    17. Tim Flerlage & Jeremy Chase Crawford & E. Kaitlynn Allen & Danielle Severns & Shaoyuan Tan & Sherri Surman & Granger Ridout & Tanya Novak & Adrienne Randolph & Alina N. West & Paul G. Thomas, 2023. "Single cell transcriptomics identifies distinct profiles in pediatric acute respiratory distress syndrome," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Shirong Cao & Yu Pan & Andrew S. Terker & Juan Pablo Arroyo Ornelas & Yinqiu Wang & Jiaqi Tang & Aolei Niu & Sarah Abu Kar & Mengdi Jiang & Wentian Luo & Xinyu Dong & Xiaofeng Fan & Suwan Wang & Matth, 2023. "Epidermal growth factor receptor activation is essential for kidney fibrosis development," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Christopher Bono & Yang Liu & Alexander Ferrena & Aneesa Valentine & Deyou Zheng & Bernice E. Morrow, 2023. "Single-cell transcriptomics uncovers a non-autonomous Tbx1-dependent genetic program controlling cardiac neural crest cell development," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Jingyang Qian & Xin Shao & Hudong Bao & Yin Fang & Wenbo Guo & Chengyu Li & Anyao Li & Hua Hua & Xiaohui Fan, 2025. "Identification and characterization of cell niches in tissue from spatial omics data at single-cell resolution," Nature Communications, Nature, vol. 16(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51096-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.