IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36996-x.html
   My bibliography  Save this article

Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers

Author

Listed:
  • Vishal Maingi

    (Department of Bioengineering, California Institute of Technology)

  • Zhao Zhang

    (University of Wisconsin-Madison)

  • Chris Thachuk

    (University of Washington)

  • Namita Sarraf

    (Department of Bioengineering, California Institute of Technology)

  • Edwin R. Chapman

    (University of Wisconsin-Madison)

  • Paul W. K. Rothemund

    (Department of Bioengineering, California Institute of Technology
    California Institute of Technology
    California Institute of Technology)

Abstract

Interactions between membrane proteins are essential for cell survival but are often poorly understood. Even the biologically functional ratio of components within a multi-subunit membrane complex—the native stoichiometry—is difficult to establish. Here we demonstrate digital nanoreactors that can control interactions between lipid-bound molecular receptors along three key dimensions: stoichiometric, spatial, and temporal. Each nanoreactor is based on a DNA origami ring, which both templates the synthesis of a liposome and provides tethering sites for DNA-based receptors (modelling membrane proteins). Receptors are released into the liposomal membrane using strand displacement and a DNA logic gate measures receptor heterodimer formation. High-efficiency tethering of receptors enables the kinetics of receptors in 1:1 and 2:2 absolute stoichiometries to be observed by bulk fluorescence, which in principle is generalizable to any ratio. Similar single-molecule-in-bulk experiments using DNA-linked membrane proteins could determine native stoichiometry and the kinetics of membrane protein interactions for applications ranging from signalling research to drug discovery.

Suggested Citation

  • Vishal Maingi & Zhao Zhang & Chris Thachuk & Namita Sarraf & Edwin R. Chapman & Paul W. K. Rothemund, 2023. "Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36996-x
    DOI: 10.1038/s41467-023-36996-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36996-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36996-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Minghui Liu & Jinglin Fu & Christian Hejesen & Yuhe Yang & Neal W. Woodbury & Kurt Gothelf & Yan Liu & Hao Yan, 2013. "A DNA tweezer-actuated enzyme nanoreactor," Nature Communications, Nature, vol. 4(1), pages 1-5, October.
    2. Pallav Kosuri & Benjamin D. Altheimer & Mingjie Dai & Peng Yin & Xiaowei Zhuang, 2019. "Rotation tracking of genome-processing enzymes using DNA origami rotors," Nature, Nature, vol. 572(7767), pages 136-140, August.
    3. Wendong Jia & Chengzhen Hu & Yuqin Wang & Yuming Gu & Guangrui Qian & Xiaoyu Du & Liying Wang & Yao Liu & Jiao Cao & Shanyu Zhang & Shuanghong Yan & Panke Zhang & Jing Ma & Hong-Yuan Chen & Shuo Huang, 2021. "Programmable nano-reactors for stochastic sensing," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Tiantian Man & Caixia Xu & Xiao-Yuan Liu & Dan Li & Chia-Kuang Tsung & Hao Pei & Ying Wan & Li Li, 2022. "Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Zhao Zhao & Jinglin Fu & Soma Dhakal & Alexander Johnson-Buck & Minghui Liu & Ting Zhang & Neal W. Woodbury & Yan Liu & Nils G. Walter & Hao Yan, 2016. "Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    6. Kyle Lund & Anthony J. Manzo & Nadine Dabby & Nicole Michelotti & Alexander Johnson-Buck & Jeanette Nangreave & Steven Taylor & Renjun Pei & Milan N. Stojanovic & Nils G. Walter & Erik Winfree & Hao Y, 2010. "Molecular robots guided by prescriptive landscapes," Nature, Nature, vol. 465(7295), pages 206-210, May.
    7. Henri G. Franquelim & Alena Khmelinskaia & Jean-Philippe Sobczak & Hendrik Dietz & Petra Schwille, 2018. "Membrane sculpting by curved DNA origami scaffolds," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    8. Bryan Wei & Mingjie Dai & Peng Yin, 2012. "Complex shapes self-assembled from single-stranded DNA tiles," Nature, Nature, vol. 485(7400), pages 623-626, May.
    9. Kallol Gupta & Joseph A. C. Donlan & Jonathan T. S. Hopper & Povilas Uzdavinys & Michael Landreh & Weston B. Struwe & David Drew & Andrew J. Baldwin & Phillip J. Stansfeld & Carol V. Robinson, 2017. "The role of interfacial lipids in stabilizing membrane protein oligomers," Nature, Nature, vol. 541(7637), pages 421-424, January.
    10. Tianpei Li & Qiuyao Jiang & Jiafeng Huang & Catherine M. Aitchison & Fang Huang & Mengru Yang & Gregory F. Dykes & Hai-Lun He & Qiang Wang & Reiner Sebastian Sprick & Andrew I. Cooper & Lu-Ning Liu, 2020. "Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    11. Shawn M. Douglas & Hendrik Dietz & Tim Liedl & Björn Högberg & Franziska Graf & William M. Shih, 2009. "Self-assembly of DNA into nanoscale three-dimensional shapes," Nature, Nature, vol. 459(7245), pages 414-418, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sungwook Woo & Sinem K. Saka & Feng Xuan & Peng Yin, 2024. "Molecular robotic agents that survey molecular landscapes for information retrieval," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Swarup Dey & Adam Dorey & Leeza Abraham & Yongzheng Xing & Irene Zhang & Fei Zhang & Stefan Howorka & Hao Yan, 2022. "A reversibly gated protein-transporting membrane channel made of DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Jae Young Lee & Heeyuen Koh & Do-Nyun Kim, 2023. "A computational model for structural dynamics and reconfiguration of DNA assemblies," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Yahong Chen & Chaoyong Yang & Zhi Zhu & Wei Sun, 2022. "Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Jessica A. Kretzmann & Anna Liedl & Alba Monferrer & Volodymyr Mykhailiuk & Samuel Beerkens & Hendrik Dietz, 2023. "Gene-encoding DNA origami for mammalian cell expression," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Zhao Zhang & Zhaomeng Feng & Xiaowei Zhao & Dominique Jean & Zhiheng Yu & Edwin R. Chapman, 2023. "Functionalization and higher-order organization of liposomes with DNA nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Molly F. Parsons & Matthew F. Allan & Shanshan Li & Tyson R. Shepherd & Sakul Ratanalert & Kaiming Zhang & Krista M. Pullen & Wah Chiu & Silvi Rouskin & Mark Bathe, 2023. "3D RNA-scaffolded wireframe origami," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Junke Liu & Hengmin Tang & Chanjuan Xu & Shengnan Zhou & Xunying Zhu & Yuanyuan Li & Laurent Prézeau & Tao Xu & Jean-Philippe Pin & Philippe Rondard & Wei Ji & Jianfeng Liu, 2022. "Biased signaling due to oligomerization of the G protein-coupled platelet-activating factor receptor," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Jing Mu & Chunxiao Li & Yu Shi & Guoyong Liu & Jianhua Zou & Dong-Yang Zhang & Chao Jiang & Xiuli Wang & Liangcan He & Peng Huang & Yuxin Yin & Xiaoyuan Chen, 2022. "Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Danping Tian & Ruipeng Hao & Xiaoming Zhang & Hu Shi & Yuwei Wang & Linfeng Liang & Haichao Liu & Hengquan Yang, 2023. "Multi-compartmental MOF microreactors derived from Pickering double emulsions for chemo-enzymatic cascade catalysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Martina F. Ober & Anna Baptist & Lea Wassermann & Amelie Heuer-Jungemann & Bert Nickel, 2022. "In situ small-angle X-ray scattering reveals strong condensation of DNA origami during silicification," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Mengru Yang & Nicolas Wenner & Gregory F. Dykes & Yan Li & Xiaojun Zhu & Yaqi Sun & Fang Huang & Jay C. D. Hinton & Lu-Ning Liu, 2022. "Biogenesis of a bacterial metabolosome for propanediol utilization," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Francis Schuknecht & Karol Kołątaj & Michael Steinberger & Tim Liedl & Theobald Lohmueller, 2023. "Accessible hotspots for single-protein SERS in DNA-origami assembled gold nanorod dimers with tip-to-tip alignment," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. A. Mills & N. Aissaoui & D. Maurel & J. Elezgaray & F. Morvan & J. J. Vasseur & E. Margeat & R. B. Quast & J. Lai Kee-Him & N. Saint & C. Benistant & A. Nord & F. Pedaci & G. Bellot, 2022. "A modular spring-loaded actuator for mechanical activation of membrane proteins," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Taiyu Chen & Marta Hojka & Philip Davey & Yaqi Sun & Gregory F. Dykes & Fei Zhou & Tracy Lawson & Peter J. Nixon & Yongjun Lin & Lu-Ning Liu, 2023. "Engineering α-carboxysomes into plant chloroplasts to support autotrophic photosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Erdmann, Melinda & Pietrzyk, Irena Magdalena & Schneider, Juliana & Helbig, Marcel & Jacob, Marita & Allmendinger, Jutta, 2022. "Bildungsungleichheit nach der Hochschulreife - das lässt sich ändern: Eine Untersuchung der Wirksamkeit eines intensiven Beratungsprogramms 1,5 Jahre nach dem Abitur," Discussion Papers, Presidential Department P 2022-002, WZB Berlin Social Science Center.
    17. Yuhao Weng & Huihong Chen & Xiaoqian Chen & Huilin Yang & Chia-Hung Chen & Hongliang Tan, 2022. "Adenosine triphosphate-activated prodrug system for on-demand bacterial inactivation and wound disinfection," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Ioanna Smyrlaki & Ferenc Fördős & Iris Rocamonde-Lago & Yang Wang & Boxuan Shen & Antonio Lentini & Vincent C. Luca & Björn Reinius & Ana I. Teixeira & Björn Högberg, 2024. "Soluble and multivalent Jag1 DNA origami nanopatterns activate Notch without pulling force," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Agnese I. Curatolo & Ofer Kimchi & Carl P. Goodrich & Ryan K. Krueger & Michael P. Brenner, 2023. "A computational toolbox for the assembly yield of complex and heterogeneous structures," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Jeroen F. Dyck & Jonathan R. Burns & Kyle I. P. Huray & Albert Konijnenberg & Stefan Howorka & Frank Sobott, 2022. "Sizing up DNA nanostructure assembly with native mass spectrometry and ion mobility," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36996-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.