IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36873-7.html
   My bibliography  Save this article

Metasurface-stabilized optical microcavities

Author

Listed:
  • Marcus Ossiander

    (Harvard University)

  • Maryna Leonidivna Meretska

    (Harvard University)

  • Sarah Rourke

    (Harvard University
    University of Waterloo)

  • Christina Spägele

    (Harvard University)

  • Xinghui Yin

    (Harvard University)

  • Ileana-Cristina Benea-Chelmus

    (Harvard University
    École Polytechnique Fédérale de Lausanne)

  • Federico Capasso

    (Harvard University)

Abstract

Cavities concentrate light and enhance its interaction with matter. Confining to microscopic volumes is necessary for many applications but space constraints in such cavities limit the design freedom. Here we demonstrate stable optical microcavities by counteracting the phase evolution of the cavity modes using an amorphous Silicon metasurface as cavity end mirror. Careful design allows us to limit the metasurface scattering losses at telecom wavelengths to less than 2% and using a distributed Bragg reflector as metasurface substrate ensures high reflectivity. Our demonstration experimentally achieves telecom-wavelength microcavities with quality factors of up to 4600, spectral resonance linewidths below 0.4 nm, and mode volumes below $$2.7{\lambda }^{3}$$ 2.7 λ 3 . The method introduces freedom to stabilize modes with arbitrary transverse intensity profiles and to design cavity-enhanced hologram modes. Our approach introduces the nanoscopic light control capabilities of dielectric metasurfaces to cavity electrodynamics and is industrially scalable using semiconductor manufacturing processes.

Suggested Citation

  • Marcus Ossiander & Maryna Leonidivna Meretska & Sarah Rourke & Christina Spägele & Xinghui Yin & Ileana-Cristina Benea-Chelmus & Federico Capasso, 2023. "Metasurface-stabilized optical microcavities," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36873-7
    DOI: 10.1038/s41467-023-36873-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36873-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36873-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kerry J. Vahala, 2003. "Optical microcavities," Nature, Nature, vol. 424(6950), pages 839-846, August.
    2. Amr M. Shaltout & Jongbum Kim & Alexandra Boltasseva & Vladimir M. Shalaev & Alexander V. Kildishev, 2018. "Ultrathin and multicolour optical cavities with embedded metasurfaces," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    3. Daniel Najer & Immo Söllner & Pavel Sekatski & Vincent Dolique & Matthias C. Löbl & Daniel Riedel & Rüdiger Schott & Sebastian Starosielec & Sascha R. Valentin & Andreas D. Wieck & Nicolas Sangouard &, 2019. "A gated quantum dot strongly coupled to an optical microcavity," Nature, Nature, vol. 575(7784), pages 622-627, November.
    4. Sébastien Gleyzes & Stefan Kuhr & Christine Guerlin & Julien Bernu & Samuel Deléglise & Ulrich Busk Hoff & Michel Brune & Jean-Michel Raimond & Serge Haroche, 2007. "Quantum jumps of light recording the birth and death of a photon in a cavity," Nature, Nature, vol. 446(7133), pages 297-300, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deschamps, Julien, 2015. "Continuous-time limit of repeated interactions for a system in a confining potential," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 327-342.
    2. Yeon Ui Lee & Shilong Li & G. Bimananda M. Wisna & Junxiang Zhao & Yuan Zeng & Andrea R. Tao & Zhaowei Liu, 2022. "Hyperbolic material enhanced scattering nanoscopy for label-free super-resolution imaging," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. N. Bart & C. Dangel & P. Zajac & N. Spitzer & J. Ritzmann & M. Schmidt & H. G. Babin & R. Schott & S. R. Valentin & S. Scholz & Y. Wang & R. Uppu & D. Najer & M. C. Löbl & N. Tomm & A. Javadi & N. O. , 2022. "Wafer-scale epitaxial modulation of quantum dot density," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Naim Ben Ali & Serhan Alshammari & Youssef Trabelsi & Haitham Alsaif & Omar Kahouli & Zied Elleuch, 2022. "Tunable Multi-Band-Stop Filters Using Generalized Fibonacci Photonic Crystals for Optical Communication Applications," Mathematics, MDPI, vol. 10(8), pages 1-10, April.
    5. Jichao Jia & Xue Cao & Xuekai Ma & Jianbo De & Jiannian Yao & Stefan Schumacher & Qing Liao & Hongbing Fu, 2023. "Circularly polarized electroluminescence from a single-crystal organic microcavity light-emitting diode based on photonic spin-orbit interactions," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Tingting Wang & Dingyang Zhang & Shiqi Yang & Zhongchong Lin & Quan Chen & Jinbo Yang & Qihuang Gong & Zuxin Chen & Yu Ye & Wenjing Liu, 2023. "Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Lira, J. & de Oliveira, J.G.G. & de Faria, J.G. Peixoto & Nemes, M.C., 2022. "Two proposals to protect a qubit using CQED techniques: Inequality between atomic velocity dispersion and losses of a quantum memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    8. Nadia O. Antoniadis & Mark R. Hogg & Willy F. Stehl & Alisa Javadi & Natasha Tomm & Rüdiger Schott & Sascha R. Valentin & Andreas D. Wieck & Arne Ludwig & Richard J. Warburton, 2023. "Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Liao, Qinghong & Song, Menglin & Bao, Weida, 2023. "Generation of second-order sideband and slow-fast light effects in a PT-symmetric optomechanical system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    10. A. Hashemi & K. Busch & D. N. Christodoulides & S. K. Ozdemir & R. El-Ganainy, 2022. "Linear response theory of open systems with exceptional points," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Pellegrini, Clément, 2010. "Existence, uniqueness and approximation of the jump-type stochastic Schrodinger equation for two-level systems," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1722-1747, August.
    12. Xiyuan Lu & Mingkang Wang & Feng Zhou & Mikkel Heuck & Wenqi Zhu & Vladimir A. Aksyuk & Dirk R. Englund & Kartik Srinivasan, 2023. "Highly-twisted states of light from a high quality factor photonic crystal ring," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Maodong Gao & Qi-Fan Yang & Qing-Xin Ji & Heming Wang & Lue Wu & Boqiang Shen & Junqiu Liu & Guanhao Huang & Lin Chang & Weiqiang Xie & Su-Peng Yu & Scott B. Papp & John E. Bowers & Tobias J. Kippenbe, 2022. "Probing material absorption and optical nonlinearity of integrated photonic materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36873-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.