IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35861-1.html
   My bibliography  Save this article

Western diet contributes to the pathogenesis of non-alcoholic steatohepatitis in male mice via remodeling gut microbiota and increasing production of 2-oleoylglycerol

Author

Listed:
  • Ming Yang

    (University of Missouri)

  • Xiaoqiang Qi

    (University of Missouri)

  • Nan Li

    (University of Missouri
    The First Affiliated Hospital of China Medical University)

  • Jussuf T. Kaifi

    (University of Missouri
    University of Missouri
    Harry S. Truman Memorial VA Hospital)

  • Shiyou Chen

    (University of Missouri)

  • Andrew A. Wheeler

    (University of Missouri)

  • Eric T. Kimchi

    (University of Missouri
    University of Missouri
    Harry S. Truman Memorial VA Hospital)

  • Aaron C. Ericsson

    (University of Missouri)

  • R. Scott Rector

    (University of Missouri
    University of Missouri)

  • Kevin F. Staveley-O’Carroll

    (University of Missouri
    University of Missouri
    Harry S. Truman Memorial VA Hospital)

  • Guangfu Li

    (University of Missouri
    University of Missouri
    Harry S. Truman Memorial VA Hospital
    University of Missouri)

Abstract

The interplay between western diet and gut microbiota drives the development of non-alcoholic fatty liver disease and its progression to non-alcoholic steatohepatitis. However, the specific microbial and metabolic mediators contributing to non-alcoholic steatohepatitis remain to be identified. Here, a choline-low high-fat and high-sugar diet, representing a typical western diet, named CL-HFS, successfully induces male mouse non-alcoholic steatohepatitis with some features of the human disease, such as hepatic inflammation, steatosis, and fibrosis. Metataxonomic and metabolomic studies identify Blautia producta and 2-oleoylglycerol as clinically relevant bacterial and metabolic mediators contributing to CL-HFS-induced non-alcoholic steatohepatitis. In vivo studies validate that both Blautia producta and 2-oleoylglycerol promote liver inflammation and hepatic fibrosis in normal diet- or CL-HFS-fed mice. Cellular and molecular studies reveal that the GPR119/TAK1/NF-κB/TGF-β1 signaling pathway mediates 2-oleoylglycerol-induced macrophage priming and subsequent hepatic stellate cell activation. These findings advance our understanding of non-alcoholic steatohepatitis pathogenesis and provide targets for developing microbiome/metabolite-based therapeutic strategies against non-alcoholic steatohepatitis.

Suggested Citation

  • Ming Yang & Xiaoqiang Qi & Nan Li & Jussuf T. Kaifi & Shiyou Chen & Andrew A. Wheeler & Eric T. Kimchi & Aaron C. Ericsson & R. Scott Rector & Kevin F. Staveley-O’Carroll & Guangfu Li, 2023. "Western diet contributes to the pathogenesis of non-alcoholic steatohepatitis in male mice via remodeling gut microbiota and increasing production of 2-oleoylglycerol," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35861-1
    DOI: 10.1038/s41467-023-35861-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35861-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35861-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew L. Kau & Philip P. Ahern & Nicholas W. Griffin & Andrew L. Goodman & Jeffrey I. Gordon, 2011. "Human nutrition, the gut microbiome and the immune system," Nature, Nature, vol. 474(7351), pages 327-336, June.
    2. Ruth E. Ley & Peter J. Turnbaugh & Samuel Klein & Jeffrey I. Gordon, 2006. "Human gut microbes associated with obesity," Nature, Nature, vol. 444(7122), pages 1022-1023, December.
    3. Cyrielle Caussy & Anupriya Tripathi & Greg Humphrey & Shirin Bassirian & Seema Singh & Claire Faulkner & Ricki Bettencourt & Emily Rizo & Lisa Richards & Zhenjiang Z. Xu & Michael R. Downes & Ronald M, 2019. "A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Ingmar Mederacke & Christine C. Hsu & Juliane S. Troeger & Peter Huebener & Xueru Mu & Dianne H. Dapito & Jean-Philippe Pradere & Robert F. Schwabe, 2013. "Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian Zhang & Lijuan Zhang & Yang Lyu & Yutao Shi & Liangyun Zhu & Min Zhang & Yuyan Zhao & Di Zhao & Lei Wang & Dan Yi & Yongqing Hou & Tao Wu, 2022. "Dietary supplementation of Lactobacillus zeae regulated the gut microbiome in piglets infected with enterotoxigenic Escherichia coli," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 67(1), pages 27-38.
    2. Kiran Konain & Sadia & Turfa Nadeem & Adeed Khan & Warda Iqbal & Arsalan & Amir Javed & Ruby Khan & Kainat Jamil & Kainat Jamil, 2018. "Importance of Probiotics in Gastrointestinal Tract," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(3), pages 128-143, March.
    3. Pirjo Wacklin & Harri Mäkivuokko & Noora Alakulppi & Janne Nikkilä & Heli Tenkanen & Jarkko Räbinä & Jukka Partanen & Kari Aranko & Jaana Mättö, 2011. "Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-10, May.
    4. Marie Bobowski-Gerard & Clémence Boulet & Francesco P. Zummo & Julie Dubois-Chevalier & Céline Gheeraert & Mohamed Bou Saleh & Jean-Marc Strub & Amaury Farce & Maheul Ploton & Loïc Guille & Jimmy Vand, 2022. "Functional genomics uncovers the transcription factor BNC2 as required for myofibroblastic activation in fibrosis," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Frisha Abkar & Sajjad ur Rahman & Ahsan Naveed & Hira Rasheed & Syed Ashar Mehfooz, 2019. "Evaluation of Oral Microflora in Obese and Non- Obese Humans from District Faisalabad, Pakistan," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 10(1), pages 12-16, March.
    6. Mariana F. Fernández & Iris Reina-Pérez & Juan Manuel Astorga & Andrea Rodríguez-Carrillo & Julio Plaza-Díaz & Luis Fontana, 2018. "Breast Cancer and Its Relationship with the Microbiota," IJERPH, MDPI, vol. 15(8), pages 1-20, August.
    7. Frederick A Matsen IV & Steven N Evans, 2013. "Edge Principal Components and Squash Clustering: Using the Special Structure of Phylogenetic Placement Data for Sample Comparison," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-15, March.
    8. Vinod Nikhra, 2019. "The Novel Dimensions of Cardio-Metabolic Health Gut Microbiota, Dysbiosis and its Fallouts," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 11(1), pages 28-37, June.
    9. Kai Lun Chang & Paul C Ho, 2014. "Gas Chromatography Time-Of-Flight Mass Spectrometry (GC-TOF-MS)-Based Metabolomics for Comparison of Caffeinated and Decaffeinated Coffee and Its Implications for Alzheimer’s Disease," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-7, August.
    10. Maja Czerwińska-Rogowska & Karolina Skonieczna-Żydecka & Krzysztof Kaseja & Karolina Jakubczyk & Joanna Palma & Marta Bott-Olejnik & Sławomir Brzozowski & Ewa Stachowska, 2022. "Kitchen Diet vs. Industrial Diets—Impact on Intestinal Barrier Parameters among Stroke Patients," IJERPH, MDPI, vol. 19(10), pages 1-11, May.
    11. Zemin Zheng & Jinchi Lv & Wei Lin, 2021. "Nonsparse Learning with Latent Variables," Operations Research, INFORMS, vol. 69(1), pages 346-359, January.
    12. Elio L Herzog & Melania Wäfler & Irene Keller & Sebastian Wolf & Martin S Zinkernagel & Denise C Zysset-Burri, 2021. "The importance of age in compositional and functional profiling of the human intestinal microbiome," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-13, October.
    13. Michael DiMarzio & Brigida Rusconi & Neela H Yennawar & Mark Eppinger & Andrew D Patterson & Edward G Dudley, 2017. "Identification of a mouse Lactobacillus johnsonii strain with deconjugase activity against the FXR antagonist T-β-MCA," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-15, September.
    14. Coilín ÓhAiseadha & Gerry A. Quinn & Ronan Connolly & Awwad Wilson & Michael Connolly & Willie Soon & Paul Hynds, 2023. "Unintended Consequences of COVID-19 Non-Pharmaceutical Interventions (NPIs) for Population Health and Health Inequalities," IJERPH, MDPI, vol. 20(7), pages 1-40, March.
    15. Tamar Ringel-Kulka & Jing Cheng & Yehuda Ringel & Jarkko Salojärvi & Ian Carroll & Airi Palva & Willem M de Vos & Reetta Satokari, 2013. "Intestinal Microbiota in Healthy U.S. Young Children and Adults—A High Throughput Microarray Analysis," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-10, May.
    16. Hannah Lees & Jonathan Swann & Simon M Poucher & Jeremy K Nicholson & Elaine Holmes & Ian D Wilson & Julian R Marchesi, 2014. "Age and Microenvironment Outweigh Genetic Influence on the Zucker Rat Microbiome," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-11, September.
    17. Itay Daybog & Oren Kolodny, 2023. "A computational framework for resolving the microbiome diversity conundrum," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Pamela N Luna & Jonathan M Mansbach & Chad A Shaw, 2020. "A joint modeling approach for longitudinal microbiome data improves ability to detect microbiome associations with disease," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-17, December.
    19. Edoardo Pasolli & Duy Tin Truong & Faizan Malik & Levi Waldron & Nicola Segata, 2016. "Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-26, July.
    20. Haushabhau S. Pagire & Suvarna H. Pagire & Byung-kwan Jeong & Won-Il Choi & Chang Joo Oh & Chae Won Lim & Minhee Kim & Jihyeon Yoon & Seong Soon Kim & Myung Ae Bae & Jae-Han Jeon & Sungmin Song & Hee , 2024. "Discovery of a peripheral 5HT2A antagonist as a clinical candidate for metabolic dysfunction-associated steatohepatitis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35861-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.