IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35762-9.html
   My bibliography  Save this article

Structure sensitivity in gas sorption and conversion on metal-organic frameworks

Author

Listed:
  • Guusje Delen

    (Utrecht University)

  • Matteo Monai

    (Utrecht University)

  • Katarina Stančiaková

    (Utrecht University)

  • Bettina Baumgartner

    (Utrecht University)

  • Florian Meirer

    (Utrecht University)

  • Bert M. Weckhuysen

    (Utrecht University)

Abstract

Many catalytic processes depend on the sorption and conversion of gaseous molecules on the surface of (porous) functional materials. These events often preferentially occur on specific, undercoordinated, external surface sites. Here we show the combination of in situ Photo-induced Force Microscopy (PiFM) with Density Functional Theory (DFT) calculations to study the site-specific sorption and conversion of formaldehyde on the external surfaces of well-defined faceted ZIF-8 microcrystals with nanoscale resolution. We observed preferential adsorption of formaldehyde on high index planes. Moreover, in situ PiFM allowed us to visualize unsaturated nanodomains within extended external crystal planes, showing enhanced sorption behavior on the nanoscale. Additionally, on defective ZIF-8 crystals, structure sensitive conversion of formaldehyde through a methoxy- and a formate mechanism mediated by Lewis acidity was found. Strikingly, sorption and conversion were influenced more by the external surface termination than by the concentration of defects. DFT calculations showed that this is due to the presence of specific atomic arrangements on high-index crystal surfaces. With this research, we showcase the high potential of in situ PiFM for structure sensitivity studies on porous functional materials.

Suggested Citation

  • Guusje Delen & Matteo Monai & Katarina Stančiaková & Bettina Baumgartner & Florian Meirer & Bert M. Weckhuysen, 2023. "Structure sensitivity in gas sorption and conversion on metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35762-9
    DOI: 10.1038/s41467-022-35762-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35762-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35762-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chung-Yeh Wu & William J. Wolf & Yehonatan Levartovsky & Hans A. Bechtel & Michael C. Martin & F. Dean Toste & Elad Gross, 2017. "High-spatial-resolution mapping of catalytic reactions on single particles," Nature, Nature, vol. 541(7638), pages 511-515, January.
    2. Ping Li & Jiazhen Li & Xiao Feng & Jie Li & Yuchen Hao & Jinwei Zhang & Hang Wang & Anxiang Yin & Junwen Zhou & Xiaojie Ma & Bo Wang, 2019. "Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Johanna Eichhorn & Christoph Kastl & Jason K. Cooper & Dominik Ziegler & Adam M. Schwartzberg & Ian D. Sharp & Francesca M. Toma, 2018. "Nanoscale imaging of charge carrier transport in water splitting photoanodes," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Boyuan Shen & Xiao Chen & Kui Shen & Hao Xiong & Fei Wei, 2020. "Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    5. Charlotte Vogt & Matteo Monai & Ellen B. Sterk & Jonas Palle & Angela E. M. Melcherts & Bart Zijlstra & Esther Groeneveld & Peter H. Berben & Jelle M. Boereboom & Emiel J. M. Hensen & Florian Meirer &, 2019. "Understanding carbon dioxide activation and carbon–carbon coupling over nickel," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengmeng Ma & Xuliang Zhang & Xiao Chen & Hao Xiong & Liang Xu & Tao Cheng & Jianyu Yuan & Fei Wei & Boyuan Shen, 2023. "In situ imaging of the atomic phase transition dynamics in metal halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Linghui Peng & Haiyu Wang & Guiying Li & Zhishu Liang & Weiping Zhang & Weina Zhao & Taicheng An, 2023. "Bioinspired artificial spider silk photocatalyst for the high-efficiency capture and inactivation of bacteria aerosols," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Gang Wu & Chen Qian & Wen-Li Lv & Xiaona Zhao & Xian-Wei Liu, 2023. "Dynamic imaging of interfacial electrochemistry on single Ag nanowires by azimuth-modulated plasmonic scattering interferometry," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Xin He & Jonathan M. Larson & Hans A. Bechtel & Robert Kostecki, 2022. "In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Linjing Tong & Siming Huang & Yujian Shen & Suya Liu & Xiaomin Ma & Fang Zhu & Guosheng Chen & Gangfeng Ouyang, 2022. "Atomically unveiling the structure-activity relationship of biomacromolecule-metal-organic frameworks symbiotic crystal," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Huiqiu Wang & Boyuan Shen & Xiao Chen & Hao Xiong & Hongmei Wang & Wenlong Song & Chaojie Cui & Fei Wei & Weizhong Qian, 2022. "Modulating inherent lewis acidity at the intergrowth interface of mortise-tenon zeolite catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Xuezhi Ma & Qiushi Liu & Ning Yu & Da Xu & Sanggon Kim & Zebin Liu & Kaili Jiang & Bryan M. Wong & Ruoxue Yan & Ming Liu, 2021. "6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    8. Liangbo Xie & Pengfei Wang & Yi Li & Dongpeng Zhang & Denghui Shang & Wenwen Zheng & Yuguo Xia & Sihui Zhan & Wenping Hu, 2022. "Pauling-type adsorption of O2 induced electrocatalytic singlet oxygen production on N–CuO for organic pollutants degradation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Charlotte Vogt & Florian Meirer & Matteo Monai & Esther Groeneveld & Davide Ferri & Rutger A. Santen & Maarten Nachtegaal & Raymond R. Unocic & Anatoly I. Frenkel & Bert M. Weckhuysen, 2021. "Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Xinxing Peng & Philipp M. Pelz & Qiubo Zhang & Peican Chen & Lingyun Cao & Yaqian Zhang & Hong-Gang Liao & Haimei Zheng & Cheng Wang & Shi-Gang Sun & Mary C. Scott, 2022. "Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Sang Bin Jeong & Ki Joon Heo & Byung Uk Lee, 2019. "Antimicrobial Air Filters Using Natural Sea Salt Particles for Deactivating Airborne Bacterial Particles," IJERPH, MDPI, vol. 17(1), pages 1-10, December.
    12. Ming Xu & Xuetao Qin & Yao Xu & Xiaochen Zhang & Lirong Zheng & Jin-Xun Liu & Meng Wang & Xi Liu & Ding Ma, 2022. "Boosting CO hydrogenation towards C2+ hydrocarbons over interfacial TiO2−x/Ni catalysts," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Lili Lin & Jinjia Liu & Xi Liu & Zirui Gao & Ning Rui & Siyu Yao & Feng Zhang & Maolin Wang & Chang Liu & Lili Han & Feng Yang & Sen Zhang & Xiao-dong Wen & Sanjaya D. Senanayake & Yichao Wu & Xiaonia, 2021. "Reversing sintering effect of Ni particles on γ-Mo2N via strong metal support interaction," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    14. Boyang Liu & Xiao Chen & Ning Huang & Shaoxiong Liu & Yu Wang & Xiaocheng Lan & Fei Wei & Tiefeng Wang, 2023. "Imaging the dynamic influence of functional groups on metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Liang Shen & Minghui Zhu & Jing Xu, 2021. "Effect of micropores on the structure and CO2 methanation performance of supported Ni/SiO2 catalyst," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1213-1221, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35762-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.