IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35755-8.html
   My bibliography  Save this article

Structural basis of transcription recognition of a hydrophobic unnatural base pair by T7 RNA polymerase

Author

Listed:
  • Juntaek Oh

    (University of California, San Diego)

  • Michiko Kimoto

    (Agency for Science, Technology and Research (A*STAR)
    Xenolis Pte. Ltd.)

  • Haoqing Xu

    (University of California, San Diego)

  • Jenny Chong

    (University of California, San Diego)

  • Ichiro Hirao

    (Agency for Science, Technology and Research (A*STAR)
    Xenolis Pte. Ltd.)

  • Dong Wang

    (University of California, San Diego
    University of California, San Diego
    University of California, San Diego)

Abstract

Bacteriophage T7 RNA polymerase (T7 RNAP) is widely used for synthesizing RNA molecules with synthetic modifications and unnatural base pairs (UBPs) for a variety of biotechnical and therapeutic applications. However, the molecular basis of transcription recognition of UBPs by T7 RNAP remains poorly understood. Here we focused on a representative UBP, 7-(2-thienyl)-imidazo[4,5-b]pyridine (Ds) and pyrrole 2-carbaldehyde (Pa), and investigated how the hydrophobic Ds–Pa pair is recognized by T7 RNAP. Our kinetic assays revealed that T7 RNAP selectively recognizes the Ds or Pa base in the templates and preferentially incorporates their cognate unnatural base nucleotide substrate (PaTP or DsTP) over natural NTPs. Our structural studies reveal that T7 RNAP recognizes the unnatural substrates at the pre-insertion state in a distinct manner compared to natural substrates. These results provide mechanistic insights into transcription recognition of UBP by T7 RNAP and provide valuable information for designing the next generation of UBPs.

Suggested Citation

  • Juntaek Oh & Michiko Kimoto & Haoqing Xu & Jenny Chong & Ichiro Hirao & Dong Wang, 2023. "Structural basis of transcription recognition of a hydrophobic unnatural base pair by T7 RNA polymerase," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35755-8
    DOI: 10.1038/s41467-022-35755-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35755-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35755-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tahir H. Tahirov & Dmitry Temiakov & Michael Anikin & Vsevolod Patlan & William T. McAllister & Dmitry G. Vassylyev & Shigeyuki Yokoyama, 2002. "Structure of a T7 RNA polymerase elongation complex at 2.9 Å resolution," Nature, Nature, vol. 420(6911), pages 43-50, November.
    2. Dmitry G. Vassylyev & Marina N. Vassylyeva & Jinwei Zhang & Murali Palangat & Irina Artsimovitch & Robert Landick, 2007. "Structural basis for substrate loading in bacterial RNA polymerase," Nature, Nature, vol. 448(7150), pages 163-168, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juntaek Oh & Zelin Shan & Shuichi Hoshika & Jun Xu & Jenny Chong & Steven A. Benner & Dmitry Lyumkis & Dong Wang, 2023. "A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles Bou-Nader & Ankur Bothra & David N. Garboczi & Stephen H. Leppla & Jinwei Zhang, 2022. "Structural basis of R-loop recognition by the S9.6 monoclonal antibody," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Claire Chung & Bert M. Verheijen & Zoe Navapanich & Eric G. McGann & Sarah Shemtov & Guan-Ju Lai & Payal Arora & Atif Towheed & Suraiya Haroon & Agnes Holczbauer & Sharon Chang & Zarko Manojlovic & St, 2023. "Evolutionary conservation of the fidelity of transcription," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Anastasiia Chaban & Leonid Minakhin & Ekaterina Goldobina & Brain Bae & Yue Hao & Sergei Borukhov & Leena Putzeys & Maarten Boon & Florian Kabinger & Rob Lavigne & Kira S. Makarova & Eugene V. Koonin , 2024. "Tail-tape-fused virion and non-virion RNA polymerases of a thermophilic virus with an extremely long tail," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Juntaek Oh & Zelin Shan & Shuichi Hoshika & Jun Xu & Jenny Chong & Steven A. Benner & Dmitry Lyumkis & Dong Wang, 2023. "A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Lin-Tai Da & Fátima Pardo Avila & Dong Wang & Xuhui Huang, 2013. "A Two-State Model for the Dynamics of the Pyrophosphate Ion Release in Bacterial RNA Polymerase," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-9, April.
    6. Yanyan Xue & Jun Li & Dian Chen & Xizhu Zhao & Liang Hong & Yu Liu, 2023. "Observation of structural switch in nascent SAM-VI riboswitch during transcription at single-nucleotide and single-molecule resolution," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35755-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.