IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35671-x.html
   My bibliography  Save this article

Mineral weathering is linked to microbial priming in the critical zone

Author

Listed:
  • Qian Fang

    (Peking University
    University of Arizona
    China University of Geosciences)

  • Anhuai Lu

    (Peking University)

  • Hanlie Hong

    (China University of Geosciences)

  • Yakov Kuzyakov

    (University of Göttingen
    Peoples Friendship University of Russia (RUDN University))

  • Thomas J. Algeo

    (China University of Geosciences
    University of Cincinnati
    China University of Geosciences)

  • Lulu Zhao

    (China University of Geosciences)

  • Yaniv Olshansky

    (University of Arizona
    Auburn University)

  • Bryan Moravec

    (University of Arizona)

  • Danielle M. Barrientes

    (University of Arizona)

  • Jon Chorover

    (University of Arizona)

Abstract

Decomposition of soil organic matter (SOM) can be stimulated by fresh organic matter input, a phenomenon known as the ‘priming effect’. Despite its global importance, the relationship of the priming effect to mineral weathering and nutrient release remains unclear. Here we show close linkages between mineral weathering in the critical zone and primed decomposition of SOM. Intensified mineral weathering and rock-derived nutrient release are generally coupled with primed SOM decomposition resulting from “triggered” microbial activity. Fluxes of organic matter products decomposed via priming are linearly correlated with weathering congruency. Weathering congruency influences the formation of organo-mineral associations, thereby modulating the accessibility of organic matter to microbial decomposers and, thus, the priming effect. Our study links weathering with primed SOM decomposition, which plays a key role in controlling soil C dynamics in space and time. These connections represent fundamental links between long-term lithogenic element cycling (= weathering) and rapid turnover of carbon and nutrients (= priming) in soil.

Suggested Citation

  • Qian Fang & Anhuai Lu & Hanlie Hong & Yakov Kuzyakov & Thomas J. Algeo & Lulu Zhao & Yaniv Olshansky & Bryan Moravec & Danielle M. Barrientes & Jon Chorover, 2023. "Mineral weathering is linked to microbial priming in the critical zone," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35671-x
    DOI: 10.1038/s41467-022-35671-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35671-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35671-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sébastien Fontaine & Sébastien Barot & Pierre Barré & Nadia Bdioui & Bruno Mary & Cornelia Rumpel, 2007. "Stability of organic carbon in deep soil layers controlled by fresh carbon supply," Nature, Nature, vol. 450(7167), pages 277-280, November.
    2. Benjamin N. Sulman & Richard P. Phillips & A. Christopher Oishi & Elena Shevliakova & Stephen W. Pacala, 2014. "Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2," Nature Climate Change, Nature, vol. 4(12), pages 1099-1102, December.
    3. Pierre Regnier & Laure Resplandy & Raymond G. Najjar & Philippe Ciais, 2022. "The land-to-ocean loops of the global carbon cycle," Nature, Nature, vol. 603(7901), pages 401-410, March.
    4. Felipe Bastida & Carlos García & Noah Fierer & David J. Eldridge & Matthew A. Bowker & Sebastián Abades & Fernando D. Alfaro & Asmeret Asefaw Berhe & Nick A. Cutler & Antonio Gallardo & Laura García-V, 2019. "Global ecological predictors of the soil priming effect," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Marco Keiluweit & Jeremy J. Bougoure & Peter S. Nico & Jennifer Pett-Ridge & Peter K. Weber & Markus Kleber, 2015. "Mineral protection of soil carbon counteracted by root exudates," Nature Climate Change, Nature, vol. 5(6), pages 588-595, June.
    6. Leiyi Chen & Li Liu & Shuqi Qin & Guibiao Yang & Kai Fang & Biao Zhu & Yakov Kuzyakov & Pengdong Chen & Yunping Xu & Yuanhe Yang, 2019. "Regulation of priming effect by soil organic matter stability over a broad geographic scale," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. Frédéric Herman & Diane Seward & Pierre G. Valla & Andrew Carter & Barry Kohn & Sean D. Willett & Todd A. Ehlers, 2013. "Worldwide acceleration of mountain erosion under a cooling climate," Nature, Nature, vol. 504(7480), pages 423-426, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ludovic Henneron & Jerôme Balesdent & Gaël Alvarez & Pierre Barré & François Baudin & Isabelle Basile-Doelsch & Lauric Cécillon & Alejandro Fernandez-Martinez & Christine Hatté & Sébastien Fontaine, 2022. "Bioenergetic control of soil carbon dynamics across depth," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Xuanyu Tao & Zhifeng Yang & Jiajie Feng & Siyang Jian & Yunfeng Yang & Colin T. Bates & Gangsheng Wang & Xue Guo & Daliang Ning & Megan L. Kempher & Xiao Jun A. Liu & Yang Ouyang & Shun Han & Linwei W, 2024. "Experimental warming accelerates positive soil priming in a temperate grassland ecosystem," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Matthew E. Craig & Kevin M. Geyer & Katilyn V. Beidler & Edward R. Brzostek & Serita D. Frey & A. Stuart Grandy & Chao Liang & Richard P. Phillips, 2022. "Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Virna Estefania Moran-Rodas & Verena Preusse & Christine Wachendorf, 2022. "Agricultural Management Practices and Decision-Making in View of Soil Organic Matter in the Urbanizing Region of Bangalore," Sustainability, MDPI, vol. 14(10), pages 1-27, May.
    6. Tong-Hui Wu & Yu-Fu Hu & Yan-Yan Zhang & Xiang-Yang Shu & Ze-Peng Yang & Wei Zhou & Cheng-Yi Huang & Jie Li & Zhi Li & Jia He & Ying Yu, 2022. "Changes in soil organic carbon and its fractions under grassland reclamation in alpine-cold soils, China," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(4), pages 211-221.
    7. Chen Ma & Runze Nie & Guoming Du, 2023. "Responses of Soil Collembolans to Land Degradation in a Black Soil Region in China," IJERPH, MDPI, vol. 20(6), pages 1-13, March.
    8. Aneta Kowalska & Marek Kucbel & Anna Grobelak, 2021. "Potential and Mechanisms for Stable C Storage in the Post-Mining Soils under Long-Term Study in Mitigation of Climate Change," Energies, MDPI, vol. 14(22), pages 1-15, November.
    9. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    11. Núria Catalán & Carina Rofner & Charles Verpoorter & María Teresa Pérez & Thorsten Dittmar & Lars Tranvik & Ruben Sommaruga & Hannes Peter, 2024. "Treeline displacement may affect lake dissolved organic matter processing at high latitudes and altitudes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Jing Wang & Xuesong Wang & Fenli Zheng & Hanmei Wei & Miaomiao Zhao & Jianyu Jiao, 2023. "Ecoenzymatic Stoichiometry Reveals Microbial Carbon and Phosphorus Limitations under Elevated CO 2 , Warming and Drought at Different Winter Wheat Growth Stages," Sustainability, MDPI, vol. 15(11), pages 1-24, June.
    13. Sining Wang & Jie Tang & Zhaoyang Li & Yuqing Liu & Zihao Zhou & Jingjing Wang & Yunke Qu & Zhenxue Dai, 2020. "Carbon Mineralization under Different Saline—Alkali Stress Conditions in Paddy Fields of Northeast China," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    14. Piao Zhou & Lin Zhang & Shi Qi, 2022. "Plant Diversity and Aboveground Biomass Interact with Abiotic Factors to Drive Soil Organic Carbon in Beijing Mountainous Areas," Sustainability, MDPI, vol. 14(17), pages 1-12, August.
    15. Jie Hu & Luyao Kang & Ziliang Li & Xuehui Feng & Caifan Liang & Zan Wu & Wei Zhou & Xuning Liu & Yuanhe Yang & Leiyi Chen, 2023. "Photo-produced aromatic compounds stimulate microbial degradation of dissolved organic carbon in thermokarst lakes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Baveye, Philippe C. & Laba, Magdeline, 2015. "Moving away from the geostatistical lamppost: Why, where, and how does the spatial heterogeneity of soils matter?," Ecological Modelling, Elsevier, vol. 298(C), pages 24-38.
    17. Mingming Wang & Xiaowei Guo & Shuai Zhang & Liujun Xiao & Umakant Mishra & Yuanhe Yang & Biao Zhu & Guocheng Wang & Xiali Mao & Tian Qian & Tong Jiang & Zhou Shi & Zhongkui Luo, 2022. "Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Peng Zhang & Yuxin He & Tao Ren & Yang Wang & Chao Liu & Naiwen Li & Longguo Li, 2021. "The Crop Residue Removal Threshold Ensures Sustainable Agriculture in the Purple Soil Region of Sichuan, China," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    19. Joan P. Casas-Ruiz & Pascal Bodmer & Kelly Ann Bona & David Butman & Mathilde Couturier & Erik J. S. Emilson & Kerri Finlay & Hélène Genet & Daniel Hayes & Jan Karlsson & David Paré & Changhui Peng & , 2023. "Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Zhe (Han) Weng & Lukas Zwieten & Ehsan Tavakkoli & Michael T. Rose & Bhupinder Pal Singh & Stephen Joseph & Lynne M. Macdonald & Stephen Kimber & Stephen Morris & Terry J. Rose & Braulio S. Archanjo &, 2022. "Microspectroscopic visualization of how biochar lifts the soil organic carbon ceiling," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35671-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.