IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35690-8.html
   My bibliography  Save this article

Discovery of two-dimensional binary nanoparticle superlattices using global Monte Carlo optimization

Author

Listed:
  • Yilong Zhou

    (Duke University
    Lawrence Livermore National Laboratory)

  • Gaurav Arya

    (Duke University)

Abstract

Binary nanoparticle (NP) superlattices exhibit distinct collective plasmonic, magnetic, optical, and electronic properties. Here, we computationally demonstrate how fluid-fluid interfaces could be used to self-assemble binary systems of NPs into 2D superlattices when the NP species exhibit different miscibility with the fluids forming the interface. We develop a basin-hopping Monte Carlo (BHMC) algorithm tailored for interface-trapped structures to rapidly determine the ground-state configuration of NPs, allowing us to explore the repertoire of binary NP architectures formed at the interface. By varying the NP size ratio, interparticle interaction strength, and difference in NP miscibility with the two fluids, we demonstrate the assembly of an array of exquisite 2D periodic architectures, including AB-, AB2-, and AB3-type monolayer superlattices as well as AB-, AB2-, A3B5-, and A4B6-type bilayer superlattices. Our results suggest that the interfacial assembly approach could be a versatile platform for fabricating 2D colloidal superlattices with tunable structure and properties.

Suggested Citation

  • Yilong Zhou & Gaurav Arya, 2022. "Discovery of two-dimensional binary nanoparticle superlattices using global Monte Carlo optimization," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35690-8
    DOI: 10.1038/s41467-022-35690-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35690-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35690-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Angang Dong & Jun Chen & Patrick M. Vora & James M. Kikkawa & Christopher B. Murray, 2010. "Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface," Nature, Nature, vol. 466(7305), pages 474-477, July.
    2. Yih Hong Lee & Wenxiong Shi & Hiang Kwee Lee & Ruibin Jiang & In Yee Phang & Yan Cui & Lucio Isa & Yijie Yang & Jianfang Wang & Shuzhou Li & Xing Yi Ling, 2015. "Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    3. Seth Coe & Wing-Keung Woo & Moungi Bawendi & Vladimir Bulović, 2002. "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature, Nature, vol. 420(6917), pages 800-803, December.
    4. Nuri Yazdani & Maximilian Jansen & Deniz Bozyigit & Weyde M. M. Lin & Sebastian Volk & Olesya Yarema & Maksym Yarema & Fanni Juranyi & Sebastian D. Huber & Vanessa Wood, 2019. "Nanocrystal superlattices as phonon-engineered solids and acoustic metamaterials," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    5. F. X. Redl & K.-S. Cho & C. B. Murray & S. O'Brien, 2003. "Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots," Nature, Nature, vol. 423(6943), pages 968-971, June.
    6. Elena V. Shevchenko & Dmitri V. Talapin & Nicholas A. Kotov & Stephen O'Brien & Christopher B. Murray, 2006. "Structural diversity in binary nanoparticle superlattices," Nature, Nature, vol. 439(7072), pages 55-59, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Da Wang & Michiel Hermes & Stan Najmr & Nikos Tasios & Albert Grau-Carbonell & Yang Liu & Sara Bals & Marjolein Dijkstra & Christopher B. Murray & Alfons Blaaderen, 2022. "Structural diversity in three-dimensional self-assembly of nanoplatelets by spherical confinement," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Bum Chul Park & Min Jun Ko & Young Kwang Kim & Gyu Won Kim & Myeong Soo Kim & Thomas Myeongseok Koo & Hong En Fu & Young Keun Kim, 2022. "Surface-ligand-induced crystallographic disorder–order transition in oriented attachment for the tuneable assembly of mesocrystals," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Dengsheng Wu & Xiaoli Lu & Jianping Li & Jing Li, 2020. "Does the institutional diversity of editorial boards increase journal quality? The case economics field," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1579-1597, August.
    4. Dmitry Lapkin & Christopher Kirsch & Jonas Hiller & Denis Andrienko & Dameli Assalauova & Kai Braun & Jerome Carnis & Young Yong Kim & Mukunda Mandal & Andre Maier & Alfred J. Meixner & Nastasia Mukha, 2022. "Spatially resolved fluorescence of caesium lead halide perovskite supercrystals reveals quasi-atomic behavior of nanocrystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Pengji Zhou & Sharon C. Glotzer, 2021. "Inverse design of isotropic pair potentials using digital alchemy with a generalized Fourier potential," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(12), pages 1-10, December.
    6. Ricky Dwi Septianto & Retno Miranti & Tomoka Kikitsu & Takaaki Hikima & Daisuke Hashizume & Nobuhiro Matsushita & Yoshihiro Iwasa & Satria Zulkarnaen Bisri, 2023. "Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Junyuan Liu & Yunhui Zhu & Taiju Tsuboi & Chao Deng & Weiwei Lou & Dan Wang & Tiangeng Liu & Qisheng Zhang, 2022. "Toward a BT.2020 green emitter through a combined multiple resonance effect and multi-lock strategy," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Bowen Sui & Youliang Zhu & Xuemei Jiang & Yifan Wang & Niboqia Zhang & Zhongyuan Lu & Bai Yang & Yunfeng Li, 2023. "Recastable assemblies of carbon dots into mechanically robust macroscopic materials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Siyu He & Xiaoqi Tang & Yunzhou Deng & Ni Yin & Wangxiao Jin & Xiuyuan Lu & Desui Chen & Chenyang Wang & Tulai Sun & Qi Chen & Yizheng Jin, 2023. "Anomalous efficiency elevation of quantum-dot light-emitting diodes induced by operational degradation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Yue Liu & Na Peng & Yifeng Yao & Xuan Zhang & Xianqi Peng & Liyan Zhao & Jing Wang & Liang Peng & Zuankai Wang & Kenji Mochizuki & Min Yue & Shikuan Yang, 2022. "Breaking the nanoparticle’s dispersible limit via rotatable surface ligands," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Zhihua Cheng & Matthew R. Jones, 2022. "Assembly of planar chiral superlattices from achiral building blocks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Sudhir Kumar & Tommaso Marcato & Frank Krumeich & Yen-Ting Li & Yu-Cheng Chiu & Chih-Jen Shih, 2022. "Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35690-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.