IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35322-1.html
   My bibliography  Save this article

Broad misappropriation of developmental splicing profile by cancer in multiple organs

Author

Listed:
  • Arashdeep Singh

    (National Cancer Institute, National Institutes of Health)

  • Arati Rajeevan

    (National Cancer Institute, National Institutes of Health)

  • Vishaka Gopalan

    (National Cancer Institute, National Institutes of Health)

  • Piyush Agrawal

    (National Cancer Institute, National Institutes of Health)

  • Chi-Ping Day

    (National Institutes of Health)

  • Sridhar Hannenhalli

    (National Cancer Institute, National Institutes of Health)

Abstract

Oncogenesis mimics key aspects of embryonic development. However, the underlying mechanisms are incompletely understood. Here, we demonstrate that the splicing events specifically active during human organogenesis, are broadly reactivated in the organ-specific tumor. Such events are associated with key oncogenic processes and predict proliferation rates in cancer cell lines as well as patient survival. Such events preferentially target nitrosylation and transmembrane-region domains, whose coordinated splicing in multiple genes respectively affect intracellular transport and N-linked glycosylation. We infer critical splicing factors potentially regulating embryonic splicing events and show that such factors are potential oncogenic drivers and are upregulated specifically in malignant cells. Multiple complementary analyses point to MYC and FOXM1 as potential transcriptional regulators of critical splicing factors in brain and liver. Our study provides a comprehensive demonstration of a splicing-mediated link between development and cancer, and suggest anti-cancer targets including splicing events, and their upstream splicing and transcriptional regulators.

Suggested Citation

  • Arashdeep Singh & Arati Rajeevan & Vishaka Gopalan & Piyush Agrawal & Chi-Ping Day & Sridhar Hannenhalli, 2022. "Broad misappropriation of developmental splicing profile by cancer in multiple organs," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35322-1
    DOI: 10.1038/s41467-022-35322-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35322-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35322-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sonya A. MacParland & Jeff C. Liu & Xue-Zhong Ma & Brendan T. Innes & Agata M. Bartczak & Blair K. Gage & Justin Manuel & Nicholas Khuu & Juan Echeverri & Ivan Linares & Rahul Gupta & Michael L. Cheng, 2018. "Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations," Nature Communications, Nature, vol. 9(1), pages 1-21, December.
    2. Eric T. Wang & Rickard Sandberg & Shujun Luo & Irina Khrebtukova & Lu Zhang & Christine Mayr & Stephen F. Kingsmore & Gary P. Schroth & Christopher B. Burge, 2008. "Alternative isoform regulation in human tissue transcriptomes," Nature, Nature, vol. 456(7221), pages 470-476, November.
    3. Eric L. Nostrand & Peter Freese & Gabriel A. Pratt & Xiaofeng Wang & Xintao Wei & Rui Xiao & Steven M. Blue & Jia-Yu Chen & Neal A. L. Cody & Daniel Dominguez & Sara Olson & Balaji Sundararaman & Liju, 2020. "A large-scale binding and functional map of human RNA-binding proteins," Nature, Nature, vol. 583(7818), pages 711-719, July.
    4. Margarida Cardoso-Moreira & Jean Halbert & Delphine Valloton & Britta Velten & Chunyan Chen & Yi Shao & Angélica Liechti & Kelly Ascenção & Coralie Rummel & Svetlana Ovchinnikova & Pavel V. Mazin & Io, 2019. "Gene expression across mammalian organ development," Nature, Nature, vol. 571(7766), pages 505-509, July.
    5. Charles P. Couturier & Shamini Ayyadhury & Phuong U. Le & Javad Nadaf & Jean Monlong & Gabriele Riva & Redouane Allache & Salma Baig & Xiaohua Yan & Mathieu Bourgey & Changseok Lee & Yu Chang David Wa, 2020. "Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy," Nature Communications, Nature, vol. 11(1), pages 1-19, December.
    6. Claudia Calabrese & Natalie R. Davidson & Deniz Demircioğlu & Nuno A. Fonseca & Yao He & André Kahles & Kjong-Van Lehmann & Fenglin Liu & Yuichi Shiraishi & Cameron M. Soulette & Lara Urban & Liliana , 2020. "Genomic basis for RNA alterations in cancer," Nature, Nature, vol. 578(7793), pages 129-136, February.
    7. Kerrie L. Marie & Antonella Sassano & Howard H. Yang & Aleksandra M. Michalowski & Helen T. Michael & Theresa Guo & Yien Che Tsai & Allan M. Weissman & Maxwell P. Lee & Lisa M. Jenkins & M. Raza Zaidi, 2020. "Melanoblast transcriptome analysis reveals pathways promoting melanoma metastasis," Nature Communications, Nature, vol. 11(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Hu & Yangjun Wu & Qili Shi & Jingni Wu & Deping Kong & Xiaohua Wu & Xianghuo He & Teng Liu & Shengli Li, 2022. "Systematic characterization of cancer transcriptome at transcript resolution," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Michelle M. Kameda-Smith & Helen Zhu & En-Ching Luo & Yujin Suk & Agata Xella & Brian Yee & Chirayu Chokshi & Sansi Xing & Frederick Tan & Raymond G. Fox & Ashley A. Adile & David Bakhshinyan & Kevin , 2022. "Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Gustavo Glusman & Juan Caballero & Max Robinson & Burak Kutlu & Leroy Hood, 2013. "Optimal Scaling of Digital Transcriptomes," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-12, November.
    4. Claire Vinel & Gabriel Rosser & Loredana Guglielmi & Myrianni Constantinou & Nicola Pomella & Xinyu Zhang & James R. Boot & Tania A. Jones & Thomas O. Millner & Anaelle A. Dumas & Vardhman Rakyan & Je, 2021. "Comparative epigenetic analysis of tumour initiating cells and syngeneic EPSC-derived neural stem cells in glioblastoma," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    5. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    6. Haofan Sun & Bin Fu & Xiaohong Qian & Ping Xu & Weijie Qin, 2024. "Nuclear and cytoplasmic specific RNA binding proteome enrichment and its changes upon ferroptosis induction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Mina Ogawa & Jia-Xin Jiang & Sunny Xia & Donghe Yang & Avrilynn Ding & Onofrio Laselva & Marcela Hernandez & Changyi Cui & Yuichiro Higuchi & Hiroshi Suemizu & Craig Dorrell & Markus Grompe & Christin, 2021. "Generation of functional ciliated cholangiocytes from human pluripotent stem cells," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    8. Timofey A. Karginov & Antoine Ménoret & Anthony T. Vella, 2022. "Optimal CD8+ T cell effector function requires costimulation-induced RNA-binding proteins that reprogram the transcript isoform landscape," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Franziska Hildebrandt & Alma Andersson & Sami Saarenpää & Ludvig Larsson & Noémi Van Hul & Sachie Kanatani & Jan Masek & Ewa Ellis & Antonio Barragan & Annelie Mollbrink & Emma R. Andersson & Joakim L, 2021. "Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    10. Anna Knörlein & Chris P. Sarnowski & Tebbe Vries & Moritz Stoltz & Michael Götze & Ruedi Aebersold & Frédéric H.-T. Allain & Alexander Leitner & Jonathan Hall, 2022. "Nucleotide-amino acid π-stacking interactions initiate photo cross-linking in RNA-protein complexes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Feng Wang & Yang Xu & Robert Wang & Beatrice Zhang & Noah Smith & Amber Notaro & Samantha Gaerlan & Eric Kutschera & Kathryn E. Kadash-Edmondson & Yi Xing & Lan Lin, 2023. "TEQUILA-seq: a versatile and low-cost method for targeted long-read RNA sequencing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Elizabeth A. Werren & Geneva R. LaForce & Anshika Srivastava & Delia R. Perillo & Shaokun Li & Katherine Johnson & Safa Baris & Brandon Berger & Samantha L. Regan & Christian D. Pfennig & Sonja Munnik, 2024. "TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    13. Patricia González-Rodríguez & Daniel J. Klionsky & Bertrand Joseph, 2022. "Autophagy regulation by RNA alternative splicing and implications in human diseases," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Yanming Ren & Zongyao Huang & Lingling Zhou & Peng Xiao & Junwei Song & Ping He & Chuanxing Xie & Ran Zhou & Menghan Li & Xiangqun Dong & Qing Mao & Chao You & Jianguo Xu & Yanhui Liu & Zhigang Lan & , 2023. "Spatial transcriptomics reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Miklos Csuros & Igor B Rogozin & Eugene V Koonin, 2011. "A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-9, September.
    16. Nysia I George & John F Bowyer & Nathaniel M Crabtree & Ching-Wei Chang, 2015. "An Iterative Leave-One-Out Approach to Outlier Detection in RNA-Seq Data," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-10, June.
    17. Johanna Luige & Alexandros Armaos & Gian Gaetano Tartaglia & Ulf Andersson Vang Ørom, 2024. "Predicting nuclear G-quadruplex RNA-binding proteins with roles in transcription and phase separation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Ilias Georgakopoulos-Soares & Guillermo E. Parada & Hei Yuen Wong & Ragini Medhi & Giulia Furlan & Roberto Munita & Eric A. Miska & Chun Kit Kwok & Martin Hemberg, 2022. "Alternative splicing modulation by G-quadruplexes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Areum Han & Peter Stoilov & Anthony J Linares & Yu Zhou & Xiang-Dong Fu & Douglas L Black, 2014. "De Novo Prediction of PTBP1 Binding and Splicing Targets Reveals Unexpected Features of Its RNA Recognition and Function," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-18, January.
    20. Susana I. Ramos & Zarmeen M. Mussa & Elisa N. Falk & Balagopal Pai & Bruno Giotti & Kimaada Allette & Peiwen Cai & Fumiko Dekio & Robert Sebra & Kristin G. Beaumont & Alexander M. Tsankov & Nadejda M., 2022. "An atlas of late prenatal human neurodevelopment resolved by single-nucleus transcriptomics," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35322-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.