IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34806-4.html
   My bibliography  Save this article

Biasing the conformation of ELMO2 reveals that myoblast fusion can be exploited to improve muscle regeneration

Author

Listed:
  • Viviane Tran

    (Montreal Clinical Research Institute (IRCM)
    Université de Montréal)

  • Sarah Nahlé

    (Montreal Clinical Research Institute (IRCM)
    Université de Montréal)

  • Amélie Robert

    (Montreal Clinical Research Institute (IRCM))

  • Inès Desanlis

    (Montreal Clinical Research Institute (IRCM)
    Université de Montréal)

  • Ryan Killoran

    (Université de Montréal)

  • Sophie Ehresmann

    (Montreal Clinical Research Institute (IRCM)
    Université de Montréal)

  • Marie-Pier Thibault

    (Montreal Clinical Research Institute (IRCM))

  • David Barford

    (MRC Laboratory of Molecular Biology)

  • Kodi S. Ravichandran

    (University of Virginia
    Ghent University)

  • Martin Sauvageau

    (Montreal Clinical Research Institute (IRCM)
    Université de Montréal
    Université de Montréal
    McGill University)

  • Matthew J. Smith

    (Université de Montréal
    Université de Montréal)

  • Marie Kmita

    (Montreal Clinical Research Institute (IRCM)
    Université de Montréal
    Université de Montréal
    McGill University)

  • Jean-François Côté

    (Montreal Clinical Research Institute (IRCM)
    Université de Montréal
    Université de Montréal
    Université de Montréal)

Abstract

Myoblast fusion is fundamental for the development of multinucleated myofibers. Evolutionarily conserved proteins required for myoblast fusion include RAC1 and its activator DOCK1. In the current study we analyzed the contribution of the DOCK1-interacting ELMO scaffold proteins to myoblast fusion. When Elmo1−/− mice underwent muscle-specific Elmo2 genetic ablation, they exhibited severe myoblast fusion defects. A mutation in the Elmo2 gene that reduced signaling resulted in a decrease in myoblast fusion. Conversely, a mutation in Elmo2 coding for a protein with an open conformation increased myoblast fusion during development and in muscle regeneration. Finally, we showed that the dystrophic features of the Dysferlin-null mice, a model of limb-girdle muscular dystrophy type 2B, were reversed when expressing ELMO2 in an open conformation. These data provide direct evidence that the myoblast fusion process could be exploited for regenerative purposes and improve the outcome of muscle diseases.

Suggested Citation

  • Viviane Tran & Sarah Nahlé & Amélie Robert & Inès Desanlis & Ryan Killoran & Sophie Ehresmann & Marie-Pier Thibault & David Barford & Kodi S. Ravichandran & Martin Sauvageau & Matthew J. Smith & Marie, 2022. "Biasing the conformation of ELMO2 reveals that myoblast fusion can be exploited to improve muscle regeneration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34806-4
    DOI: 10.1038/s41467-022-34806-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34806-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34806-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dimple Bansal & Katsuya Miyake & Steven S. Vogel & Séverine Groh & Chien-Chang Chen & Roger Williamson & Paul L. McNeil & Kevin P. Campbell, 2003. "Defective membrane repair in dysferlin-deficient muscular dystrophy," Nature, Nature, vol. 423(6936), pages 168-172, May.
    2. Michael R. Elliott & Shuqiu Zheng & Daeho Park & Robin I. Woodson & Michael A. Reardon & Ignacio J. Juncadella & Jason M. Kinchen & Jun Zhang & Jeffrey J. Lysiak & Kodi S. Ravichandran, 2010. "Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo," Nature, Nature, vol. 467(7313), pages 333-337, September.
    3. Noumeira Hamoud & Viviane Tran & Takahiro Aimi & Wataru Kakegawa & Sylvie Lahaie & Marie-Pier Thibault & Ariane Pelletier & G. William Wong & In-San Kim & Artur Kania & Michisuke Yuzaki & Michel Bouvi, 2018. "Spatiotemporal regulation of the GPCR activity of BAI3 by C1qL4 and Stabilin-2 controls myoblast fusion," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    4. Seung-Yoon Park & Youngeun Yun & Jung-Suk Lim & Mi-Jin Kim & Sang-Yeob Kim & Jung-Eun Kim & In-San Kim, 2016. "Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration," Nature Communications, Nature, vol. 7(1), pages 1-15, April.
    5. Silvio Alessandro Di Gioia & Samantha Connors & Norisada Matsunami & Jessica Cannavino & Matthew F. Rose & Nicole M. Gilette & Pietro Artoni & Nara Lygia de Macena Sobreira & Wai-Man Chan & Bryn D. We, 2017. "A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome," Nature Communications, Nature, vol. 8(1), pages 1-16, December.
    6. Yi-Chun Wu & H. Robert Horvitz, 1998. "C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180," Nature, Nature, vol. 392(6675), pages 501-504, April.
    7. Leifu Chang & Jing Yang & Chang Hwa Jo & Andreas Boland & Ziguo Zhang & Stephen H. McLaughlin & Afnan Abu-Thuraia & Ryan C. Killoran & Matthew J. Smith & Jean-Francois Côté & David Barford, 2020. "Structure of the DOCK2−ELMO1 complex provides insights into regulation of the auto-inhibited state," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    8. Malgorzata E. Quinn & Qingnian Goh & Mitsutoshi Kurosaka & Dilani G. Gamage & Michael J. Petrany & Vikram Prasad & Douglas P. Millay, 2017. "Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    9. Zhuangfeng Weng & Chenghao Situ & Lin Lin & Zhenguo Wu & Jinwei Zhu & Rongguang Zhang, 2019. "Structure of BAI1/ELMO2 complex reveals an action mechanism of adhesion GPCRs via ELMO family scaffolds," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    10. Gonen Golani & Evgenia Leikina & Kamran Melikov & Jarred M. Whitlock & Dilani G. Gamage & Gracia Luoma-Overstreet & Douglas P. Millay & Michael M. Kozlov & Leonid V. Chernomordik, 2021. "Myomerger promotes fusion pore by elastic coupling between proximal membrane leaflets and hemifusion diaphragm," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    11. Douglas P. Millay & Jason R. O’Rourke & Lillian B. Sutherland & Svetlana Bezprozvannaya & John M. Shelton & Rhonda Bassel-Duby & Eric N. Olson, 2013. "Myomaker is a membrane activator of myoblast fusion and muscle formation," Nature, Nature, vol. 499(7458), pages 301-305, July.
    12. Amelia E. Hochreiter-Hufford & Chang Sup Lee & Jason M. Kinchen & Jennifer D. Sokolowski & Sanja Arandjelovic & Jarrod A. Call & Alexander L. Klibanov & Zhen Yan & James W. Mandell & Kodi S. Ravichand, 2013. "Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion," Nature, Nature, vol. 497(7448), pages 263-267, May.
    13. Qiao Zhang & Ajay A. Vashisht & Jason O’Rourke & Stéphane Y Corbel & Rita Moran & Angelica Romero & Loren Miraglia & Jia Zhang & Eric Durrant & Christian Schmedt & Srinath C. Sampath & Srihari C. Samp, 2017. "The microprotein Minion controls cell fusion and muscle formation," Nature Communications, Nature, vol. 8(1), pages 1-15, August.
    14. Ines Desanlis & Yacine Kherdjemil & Alexandre Mayran & Yasser Bouklouch & Claudia Gentile & Rushikesh Sheth & Rolf Zeller & Jacques Drouin & Marie Kmita, 2020. "HOX13-dependent chromatin accessibility underlies the transition towards the digit development program," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    15. Satoko Hakeda-Suzuki & Julian Ng & Julia Tzu & Georg Dietzl & Yan Sun & Matthew Harms & Tim Nardine & Liqun Luo & Barry J. Dickson, 2002. "Rac function and regulation during Drosophila development," Nature, Nature, vol. 416(6879), pages 438-442, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianxin Liu & Qian Zhu & Yan Kai & Trevor Bingham & Stacy Wang & Hye Ji Cha & Stuti Mehta & Thorsten M. Schlaeger & Guo-Cheng Yuan & Stuart H. Orkin, 2024. "Matrin3 mediates differentiation through stabilizing chromatin loop-domain interactions and YY1 mediated enhancer-promoter interactions," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Matthieu Dos Santos & Akansha M. Shah & Yichi Zhang & Svetlana Bezprozvannaya & Kenian Chen & Lin Xu & Weichun Lin & John R. McAnally & Rhonda Bassel-Duby & Ning Liu & Eric N. Olson, 2023. "Opposing gene regulatory programs governing myofiber development and maturation revealed at single nucleus resolution," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Dandan Qian & Ye Cong & Runhao Wang & Quan Chen & Chuangye Yan & Deshun Gong, 2023. "Structural insight into the human SID1 transmembrane family member 2 reveals its lipid hydrolytic activity," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Mahtab Tavasoli & Sarah Lahire & Stanislav Sokolenko & Robyn Novorolsky & Sarah Anne Reid & Abir Lefsay & Meredith O. C. Otley & Kitipong Uaesoontrachoon & Joyce Rowsell & Sadish Srinivassane & Molly , 2022. "Mechanism of action and therapeutic route for a muscular dystrophy caused by a genetic defect in lipid metabolism," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. David Moi & Shunsuke Nishio & Xiaohui Li & Clari Valansi & Mauricio Langleib & Nicolas G. Brukman & Kateryna Flyak & Christophe Dessimoz & Daniele de Sanctis & Kathryn Tunyasuvunakool & John Jumper & , 2022. "Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Christopher Chase Bolt & Lucille Lopez-Delisle & Aurélie Hintermann & Bénédicte Mascrez & Antonella Rauseo & Guillaume Andrey & Denis Duboule, 2022. "Context-dependent enhancer function revealed by targeted inter-TAD relocation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Jarred M. Whitlock & Evgenia Leikina & Kamran Melikov & Luis Fernandez Castro & Sandy Mattijssen & Richard J. Maraia & Michael T. Collins & Leonid V. Chernomordik, 2023. "Cell surface-bound La protein regulates the cell fusion stage of osteoclastogenesis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34806-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.