IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62784-w.html
   My bibliography  Save this article

GraphVelo allows for accurate inference of multimodal velocities and molecular mechanisms for single cells

Author

Listed:
  • Yuhao Chen

    (Zhejiang University
    University of Pittsburgh)

  • Yan Zhang

    (University of Pittsburgh)

  • Jiaqi Gan

    (University of Pittsburgh)

  • Ke Ni

    (University of Pittsburgh)

  • Ming Chen

    (Zhejiang University
    Zhejiang University School of Medicine)

  • Ivet Bahar

    (Stony Brook University)

  • Jianhua Xing

    (University of Pittsburgh
    University of Pittsburgh
    University of Pittsburgh Hillman Cancer Center)

Abstract

RNA velocities and generalizations emerge as powerful approaches for extracting time-resolved information from high-throughput snapshot single-cell data. Yet, several inherent limitations restrict applying the approaches to genes not suitable for RNA velocity inference due to complex transcriptional dynamics, low expression, or lacking splicing dynamics, or data of non-transcriptomic modality. Here, we present GraphVelo, a graph-based machine learning procedure that uses as input the RNA velocities inferred from existing methods and infers velocity vectors lying in the tangent space of the low-dimensional manifold formed by the single cell data. GraphVelo preserves vector magnitude and direction information during transformations across different data representations. Tests on synthetic and experimental single-cell data, including viral-host interactome, multi-omics, and spatial genomics datasets demonstrate that GraphVelo, together with downstream generalized dynamo analyses, extends RNA velocities to multi-modal data and reveals quantitative nonlinear regulation relations between genes, virus, and host cells, and different layers of gene regulation.

Suggested Citation

  • Yuhao Chen & Yan Zhang & Jiaqi Gan & Ke Ni & Ming Chen & Ivet Bahar & Jianhua Xing, 2025. "GraphVelo allows for accurate inference of multimodal velocities and molecular mechanisms for single cells," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62784-w
    DOI: 10.1038/s41467-025-62784-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62784-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62784-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gioele La Manno & Ruslan Soldatov & Amit Zeisel & Emelie Braun & Hannah Hochgerner & Viktor Petukhov & Katja Lidschreiber & Maria E. Kastriti & Peter Lönnerberg & Alessandro Furlan & Jean Fan & Lars E, 2018. "RNA velocity of single cells," Nature, Nature, vol. 560(7719), pages 494-498, August.
    2. Mingze Gao & Chen Qiao & Yuanhua Huang, 2022. "UniTVelo: temporally unified RNA velocity reinforces single-cell trajectory inference," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Sara Sunshine & Andreas S. Puschnik & Joseph M. Replogle & Matthew T. Laurie & Jamin Liu & Beth Shoshana Zha & James K. Nuñez & Janie R. Byrum & Aidan H. McMorrow & Matthew B. Frieman & Juliane Winkle, 2023. "Systematic functional interrogation of SARS-CoV-2 host factors using Perturb-seq," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Areum Park & Eun A. Ra & Taeyun A. Lee & Hyun jin Choi & Eunhye Lee & Sujin Kang & Jun-Young Seo & Sungwook Lee & Boyoun Park, 2019. "HCMV-encoded US7 and US8 act as antagonists of innate immunity by distinctively targeting TLR-signaling pathways," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    5. Robrecht Cannoodt & Wouter Saelens & Louise Deconinck & Yvan Saeys, 2021. "Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Blanca Pijuan-Sala & Jonathan A. Griffiths & Carolina Guibentif & Tom W. Hiscock & Wajid Jawaid & Fernando J. Calero-Nieto & Carla Mulas & Ximena Ibarra-Soria & Richard C. V. Tyser & Debbie Lee Lian H, 2019. "A single-cell molecular map of mouse gastrulation and early organogenesis," Nature, Nature, vol. 566(7745), pages 490-495, February.
    7. Diana Mahdessian & Anthony J. Cesnik & Christian Gnann & Frida Danielsson & Lovisa Stenström & Muhammad Arif & Cheng Zhang & Trang Le & Fredric Johansson & Rutger Schutten & Anna Bäckström & Ulrika Ax, 2021. "Spatiotemporal dissection of the cell cycle with single-cell proteogenomics," Nature, Nature, vol. 590(7847), pages 649-654, February.
    8. Ines Desanlis & Yacine Kherdjemil & Alexandre Mayran & Yasser Bouklouch & Claudia Gentile & Rushikesh Sheth & Rolf Zeller & Jacques Drouin & Marie Kmita, 2020. "HOX13-dependent chromatin accessibility underlies the transition towards the digit development program," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    9. Jiachen Li & Xiaoyong Pan & Ye Yuan & Hong-Bin Shen, 2024. "TFvelo: gene regulation inspired RNA velocity estimation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Zizhen Yao & Cindy T. J. Velthoven & Michael Kunst & Meng Zhang & Delissa McMillen & Changkyu Lee & Won Jung & Jeff Goldy & Aliya Abdelhak & Matthew Aitken & Katherine Baker & Pamela Baker & Eliza Bar, 2023. "A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain," Nature, Nature, vol. 624(7991), pages 317-332, December.
    11. Bibiana Costa & Jennifer Becker & Tobias Krammer & Felix Mulenge & Verónica Durán & Andreas Pavlou & Olivia Luise Gern & Xiaojing Chu & Yang Li & Luka Čičin-Šain & Britta Eiz-Vesper & Martin Messerle , 2024. "Human cytomegalovirus exploits STING signaling and counteracts IFN/ISG induction to facilitate infection of dendritic cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muyang Ge & Jishuai Miao & Ji Qi & Xiaocheng Zhou & Zhixiang Lin, 2025. "TIVelo: RNA velocity estimation leveraging cluster-level trajectory inference," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    2. Xu Liao & Lican Kang & Yihao Peng & Xiaoran Chai & Peng Xie & Chengqi Lin & Hongkai Ji & Yuling Jiao & Jin Liu, 2024. "Multivariate stochastic modeling for transcriptional dynamics with cell-specific latent time using SDEvelo," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Min Yi Feng & Wuxinhao Cao & Nareh Tahmasian & Bharti Kukreja & Gen Li & Bianca Rusu & Ji-Young Youn & Brian T. Kalish, 2025. "Molecular cartography of the human down syndrome and trisomic mouse brain," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    4. Anneke Brümmer & Sven Bergmann, 2024. "Disentangling genetic effects on transcriptional and post-transcriptional gene regulation through integrating exon and intron expression QTLs," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Dandan Cao & Yijun Liu & Yanfei Cheng & Jue Wang & Bolun Zhang & Yanhui Zhai & Kongfu Zhu & Ye Liu & Ye Shang & Xiao Xiao & Yi Chang & Yin Lau Lee & William Shu Biu Yeung & Yuanhua Huang & Yuanqing Ya, 2025. "Time-series single-cell transcriptomic profiling of luteal-phase endometrium uncovers dynamic characteristics and its dysregulation in recurrent implantation failures," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    6. Mingze Gao & Chen Qiao & Yuanhua Huang, 2022. "UniTVelo: temporally unified RNA velocity reinforces single-cell trajectory inference," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Jiachen Li & Xiaoyong Pan & Ye Yuan & Hong-Bin Shen, 2024. "TFvelo: gene regulation inspired RNA velocity estimation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Ankit Agrawal & Stefan Thomann & Sukanya Basu & Dominic Grün, 2024. "NiCo identifies extrinsic drivers of cell state modulation by niche covariation analysis," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    9. Akram A. Hamed & Daniel J. Kunz & Ibrahim El-Hamamy & Quang M. Trinh & Omar D. Subedar & Laura M. Richards & Warren Foltz & Garrett Bullivant & Matthaeus Ware & Maria C. Vladoiu & Jiao Zhang & Antony , 2022. "A brain precursor atlas reveals the acquisition of developmental-like states in adult cerebral tumours," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Rui Sun & Wenjie Cao & ShengXuan Li & Jian Jiang & Yazhou Shi & Bengong Zhang, 2024. "scGRN-Entropy: Inferring cell differentiation trajectories using single-cell data and gene regulation network-based transfer entropy," PLOS Computational Biology, Public Library of Science, vol. 20(11), pages 1-21, November.
    11. Jan T Schleicher & Revant Gupta & Dario Cerletti & Ioana Sandu & Annette Oxenius & Manfred Claassen, 2025. "Exploratory trajectory inference reveals convergent lineages for CD8 T cells in chronic LCMV infection," PLOS ONE, Public Library of Science, vol. 20(9), pages 1-25, September.
    12. Huanhuan Tan & Weixu Wang & Congjin Zhou & Yanfeng Wang & Shu Zhang & Pinglan Yang & Rui Guo & Wei Chen & Jinwen Zhang & Lan Ye & Yiqiang Cui & Ting Ni & Ke Zheng, 2023. "Single-cell RNA-seq uncovers dynamic processes orchestrated by RNA-binding protein DDX43 in chromatin remodeling during spermiogenesis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    13. Yanchuan Li & Huamei Li & Cheng Peng & Ge Meng & Yijun Lu & Honglin Liu & Li Cui & Huan Zhou & Zhu Xu & Lingyun Sun & Lihong Liu & Qing Xiong & Beicheng Sun & Shiping Jiao, 2024. "Unraveling the spatial organization and development of human thymocytes through integration of spatial transcriptomics and single-cell multi-omics profiling," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    14. Christoph Ziegenhain & Rickard Sandberg, 2021. "BAMboozle removes genetic variation from human sequence data for open data sharing," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    15. Yoshiaki Yasumizu & Naganari Ohkura & Hisashi Murata & Makoto Kinoshita & Soichiro Funaki & Satoshi Nojima & Kansuke Kido & Masaharu Kohara & Daisuke Motooka & Daisuke Okuzaki & Shuji Suganami & Eriko, 2022. "Myasthenia gravis-specific aberrant neuromuscular gene expression by medullary thymic epithelial cells in thymoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    17. Maximilian Reck & David P. Baird & Stefan Veizades & Callum Sutherland & Rachel M. B. Bell & Heeyoun Hur & Carolynn Cairns & Piotr P. Janas & Ross Campbell & Andy Nam & Wei Yang & Nathan Schurman & Cl, 2025. "Multiomic analysis of human kidney disease identifies a tractable inflammatory and pro-fibrotic tubular cell phenotype," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    18. Alex J. Lee & Alma Dubuc & Michael Kunst & Shenqin Yao & Nicholas Lusk & Lydia Ng & Hongkui Zeng & Bosiljka Tasic & Reza Abbasi-Asl, 2025. "Data-driven fine-grained region discovery in the mouse brain with transformers," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    19. Keyong Sun & Runda Xu & Fuhai Ma & Naixue Yang & Yang Li & Xiaofeng Sun & Peng Jin & Wenzhe Kang & Lemei Jia & Jianping Xiong & Haitao Hu & Yantao Tian & Xun Lan, 2022. "scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Fabian T. Hager & Trong Hieu Nguyen & Asmae Laouina & Lydia Kopplin & Anna Andrusaite & Susan A. V. Jennings & Britta Simons & Andrea Leufgen & Thomas Clavel & Simon Milling & Immo Prinz & Reinhold Fö, 2025. "Progressive changes in phenotype, transcriptome and proliferation capacity characterise continued maturation and migration of intestinal cDCs in homeostasis," Nature Communications, Nature, vol. 16(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62784-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.