IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34573-2.html
   My bibliography  Save this article

Ultra-fast triplet-triplet-annihilation-mediated high-lying reverse intersystem crossing triggered by participation of nπ*-featured excited states

Author

Listed:
  • Yanju Luo

    (Sichuan University
    Sichuan University)

  • Kai Zhang

    (Changzhou University)

  • Zhenming Ding

    (Changzhou University)

  • Ping Chen

    (Southwest University)

  • Xiaomei Peng

    (South China University of Technology)

  • Yihuan Zhao

    (Sichuan University)

  • Kuan Chen

    (Sichuan University)

  • Chuan Li

    (Sichuan University)

  • Xujun Zheng

    (Sichuan University)

  • Yan Huang

    (Sichuan University)

  • Xuemei Pu

    (Sichuan University)

  • Yu Liu

    (Changzhou University)

  • Shi-Jian Su

    (South China University of Technology)

  • Xiandeng Hou

    (Sichuan University
    Sichuan University)

  • Zhiyun Lu

    (Sichuan University)

Abstract

The harvesting of ‘hot’ triplet excitons through high-lying reverse intersystem crossing mechanism has emerged as a hot research issue in the field of organic light-emitting diodes. However, if high-lying reverse intersystem crossing materials lack the capability to convert ‘cold’ T1 excitons into singlet ones, the actual maximum exciton utilization efficiency would generally deviate from 100%. Herein, through comparative studies on two naphthalimide-based compounds CzNI and TPANI, we revealed that the ‘cold’ T1 excitons in high-lying reverse intersystem crossing materials can be utilized effectively through the triplet-triplet annihilation-mediated high-lying reverse intersystem crossing process if they possess certain triplet-triplet upconversion capability. Especially, quite effective triplet-triplet annihilation-mediated high-lying reverse intersystem crossing can be triggered by endowing the high-lying reverse intersystem crossing process with a 3ππ*→1nπ* character. By taking advantage of the permanent orthogonal orbital transition effect of 3ππ*→1nπ*, spin–orbit coupling matrix elements of ca. 10 cm−1 can be acquired, and hence ultra-fast mediated high-lying reverse intersystem crossing process with rate constant over 109 s−1 can be realized.

Suggested Citation

  • Yanju Luo & Kai Zhang & Zhenming Ding & Ping Chen & Xiaomei Peng & Yihuan Zhao & Kuan Chen & Chuan Li & Xujun Zheng & Yan Huang & Xuemei Pu & Yu Liu & Shi-Jian Su & Xiandeng Hou & Zhiyun Lu, 2022. "Ultra-fast triplet-triplet-annihilation-mediated high-lying reverse intersystem crossing triggered by participation of nπ*-featured excited states," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34573-2
    DOI: 10.1038/s41467-022-34573-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34573-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34573-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chaw Keong Yong & Andrew J. Musser & Sam L. Bayliss & Steven Lukman & Hiroyuki Tamura & Olga Bubnova & Rawad K. Hallani & Aurélie Meneau & Roland Resel & Munetaka Maruyama & Shu Hotta & Laura M. Herz , 2017. "The entangled triplet pair state in acene and heteroacene materials," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    2. Xiugang Wu & Chun-Ying Huang & Deng-Gao Chen & Denghui Liu & Chichi Wu & Keh-Jiunh Chou & Bin Zhang & Yafei Wang & Yu Liu & Elise Y. Li & Weiguo Zhu & Pi-Tai Chou, 2020. "Exploiting racemism enhanced organic room-temperature phosphorescence to demonstrate Wallach’s rule in the lighting chiral chromophores," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Ryota Ieuji & Kenichi Goushi & Chihaya Adachi, 2019. "Triplet–triplet upconversion enhanced by spin–orbit coupling in organic light-emitting diodes," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongseok Hong & Maximilian Rudolf & Munnyon Kim & Juno Kim & Tim Schembri & Ana-Maria Krause & Kazutaka Shoyama & David Bialas & Merle I. S. Röhr & Taiha Joo & Hyungjun Kim & Dongho Kim & Frank Würthn, 2022. "Steering the multiexciton generation in slip-stacked perylene dye array via exciton coupling," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Juan Wei & Chenyuan Liu & Jiayu Duan & Aiwen Shao & Jinlu Li & Jiangang Li & Wenjie Gu & Zixian Li & Shujuan Liu & Yun Ma & Wei Huang & Qiang Zhao, 2023. "Conformation-dependent dynamic organic phosphorescence through thermal energy driven molecular rotations," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. A. Lennart Schleper & Kenichi Goushi & Christoph Bannwarth & Bastian Haehnle & Philipp J. Welscher & Chihaya Adachi & Alexander J. C. Kuehne, 2021. "Hot exciplexes in U-shaped TADF molecules with emission from locally excited states," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Rongjuan Huang & Yunfei He & Juan Wang & Jindou Zou & Hailan Wang & Haodong Sun & Yuxin Xiao & Dexin Zheng & Jiani Ma & Tao Yu & Wei Huang, 2024. "Tunable afterglow for mechanical self-monitoring 3D printing structures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Xiaokang Yao & Huili Ma & Xiao Wang & He Wang & Qian Wang & Xin Zou & Zhicheng Song & Wenyong Jia & Yuxin Li & Yufeng Mao & Manjeet Singh & Wenpeng Ye & Jian Liang & Yanyun Zhang & Zhuang Liu & Yixiao, 2022. "Ultralong organic phosphorescence from isolated molecules with repulsive interactions for multifunctional applications," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Tianwen Zhu & Tianjia Yang & Qiang Zhang & Wang Zhang Yuan, 2022. "Clustering and halogen effects enabled red/near-infrared room temperature phosphorescence from aliphatic cyclic imides," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Biao Chen & Wenhuan Huang & Guoqing Zhang, 2023. "Observation of Chiral-selective room-temperature phosphorescence enhancement via chirality-dependent energy transfer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Hui Li & Jie Gu & Zijie Wang & Juan Wang & Fei He & Ping Li & Ye Tao & Huanhuan Li & Gaozhan Xie & Wei Huang & Chao Zheng & Runfeng Chen, 2022. "Single-component color-tunable circularly polarized organic afterglow through chiral clusterization," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Nilabja Maity & Woojae Kim & Naitik A. Panjwani & Arup Kundu & Kanad Majumder & Pranav Kasetty & Divji Mishra & Robert Bittl & Jayashree Nagesh & Jyotishman Dasgupta & Andrew J. Musser & Satish Patil, 2022. "Parallel triplet formation pathways in a singlet fission material," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34573-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.