IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15976-5.html
   My bibliography  Save this article

Exploiting racemism enhanced organic room-temperature phosphorescence to demonstrate Wallach’s rule in the lighting chiral chromophores

Author

Listed:
  • Xiugang Wu

    (Changzhou University)

  • Chun-Ying Huang

    (National Taiwan University)

  • Deng-Gao Chen

    (National Taiwan University)

  • Denghui Liu

    (Changzhou University)

  • Chichi Wu

    (National Normal Taiwan University)

  • Keh-Jiunh Chou

    (National Taiwan University)

  • Bin Zhang

    (Changzhou University)

  • Yafei Wang

    (Changzhou University)

  • Yu Liu

    (Changzhou University)

  • Elise Y. Li

    (National Normal Taiwan University)

  • Weiguo Zhu

    (Changzhou University)

  • Pi-Tai Chou

    (National Taiwan University)

Abstract

The correlation between molecular packing structure and its room-temperature phosphorescence (RTP), hence rational promotion of the intensity, remains unclear. We herein present racemism enhanced RTP chiral chromophores by 2,2-bis-(diphenylphosphino)-1,1-napthalene (rac-BINAP) in comparison to its chiral counterparts. The result shows that rac-BINAP in crystal with denser density, consistent with a long standing Wallach’s rule, exhibits deeper red RTP at 680 nm than that of the chiral counterparts. The cross packing between alternative R- and S- forms in rac-BINAP crystal significantly retards the bimolecular quenching pathway, triplet-triplet annihilation (TTA), and hence suppresses the non-radiative pathway, boosting the RTP intensity. The result extends the Wallach’s rule to the fundamental difference in chiral-photophysics. In electroluminescence, rac-BINAP exhibits more balanced fluorescence versus phosphorescence intensity by comparison with that of photoluminescence, rendering a white-light emission. The result paves an avenue en route for white-light organic light emitting diodes via full exploitation of intrinsic fluorescence and phosphorescence.

Suggested Citation

  • Xiugang Wu & Chun-Ying Huang & Deng-Gao Chen & Denghui Liu & Chichi Wu & Keh-Jiunh Chou & Bin Zhang & Yafei Wang & Yu Liu & Elise Y. Li & Weiguo Zhu & Pi-Tai Chou, 2020. "Exploiting racemism enhanced organic room-temperature phosphorescence to demonstrate Wallach’s rule in the lighting chiral chromophores," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15976-5
    DOI: 10.1038/s41467-020-15976-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15976-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15976-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biao Chen & Wenhuan Huang & Guoqing Zhang, 2023. "Observation of Chiral-selective room-temperature phosphorescence enhancement via chirality-dependent energy transfer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Rongjuan Huang & Yunfei He & Juan Wang & Jindou Zou & Hailan Wang & Haodong Sun & Yuxin Xiao & Dexin Zheng & Jiani Ma & Tao Yu & Wei Huang, 2024. "Tunable afterglow for mechanical self-monitoring 3D printing structures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Xiaokang Yao & Huili Ma & Xiao Wang & He Wang & Qian Wang & Xin Zou & Zhicheng Song & Wenyong Jia & Yuxin Li & Yufeng Mao & Manjeet Singh & Wenpeng Ye & Jian Liang & Yanyun Zhang & Zhuang Liu & Yixiao, 2022. "Ultralong organic phosphorescence from isolated molecules with repulsive interactions for multifunctional applications," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Tianwen Zhu & Tianjia Yang & Qiang Zhang & Wang Zhang Yuan, 2022. "Clustering and halogen effects enabled red/near-infrared room temperature phosphorescence from aliphatic cyclic imides," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Juan Wei & Chenyuan Liu & Jiayu Duan & Aiwen Shao & Jinlu Li & Jiangang Li & Wenjie Gu & Zixian Li & Shujuan Liu & Yun Ma & Wei Huang & Qiang Zhao, 2023. "Conformation-dependent dynamic organic phosphorescence through thermal energy driven molecular rotations," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Hui Li & Jie Gu & Zijie Wang & Juan Wang & Fei He & Ping Li & Ye Tao & Huanhuan Li & Gaozhan Xie & Wei Huang & Chao Zheng & Runfeng Chen, 2022. "Single-component color-tunable circularly polarized organic afterglow through chiral clusterization," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Yanju Luo & Kai Zhang & Zhenming Ding & Ping Chen & Xiaomei Peng & Yihuan Zhao & Kuan Chen & Chuan Li & Xujun Zheng & Yan Huang & Xuemei Pu & Yu Liu & Shi-Jian Su & Xiandeng Hou & Zhiyun Lu, 2022. "Ultra-fast triplet-triplet-annihilation-mediated high-lying reverse intersystem crossing triggered by participation of nπ*-featured excited states," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15976-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.