IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34220-w.html
   My bibliography  Save this article

Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots

Author

Listed:
  • Xiqiao Wang

    (National Institute of Standards and Technology
    University of Maryland
    Rigetti Computing)

  • Ehsan Khatami

    (San José State University)

  • Fan Fei

    (National Institute of Standards and Technology
    University of Maryland)

  • Jonathan Wyrick

    (National Institute of Standards and Technology)

  • Pradeep Namboodiri

    (National Institute of Standards and Technology)

  • Ranjit Kashid

    (National Institute of Standards and Technology
    Center for Materials for Electronics Technology)

  • Albert F. Rigosi

    (National Institute of Standards and Technology)

  • Garnett Bryant

    (National Institute of Standards and Technology
    University of Maryland)

  • Richard Silver

    (National Institute of Standards and Technology)

Abstract

The Hubbard model is an essential tool for understanding many-body physics in condensed matter systems. Artificial lattices of dopants in silicon are a promising method for the analog quantum simulation of extended Fermi-Hubbard Hamiltonians in the strong interaction regime. However, complex atom-based device fabrication requirements have meant emulating a tunable two-dimensional Fermi-Hubbard Hamiltonian in silicon has not been achieved. Here, we fabricate 3 × 3 arrays of single/few-dopant quantum dots with finite disorder and demonstrate tuning of the electron ensemble using gates and probe the many-body states using quantum transport measurements. By controlling the lattice constants, we tune the hopping amplitude and long-range interactions and observe the finite-size analogue of a transition from metallic to Mott insulating behavior. We simulate thermally activated hopping and Hubbard band formation using increased temperatures. As atomically precise fabrication continues to improve, these results enable a new class of engineered artificial lattices to simulate interactive fermionic models.

Suggested Citation

  • Xiqiao Wang & Ehsan Khatami & Fan Fei & Jonathan Wyrick & Pradeep Namboodiri & Ranjit Kashid & Albert F. Rigosi & Garnett Bryant & Richard Silver, 2022. "Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34220-w
    DOI: 10.1038/s41467-022-34220-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34220-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34220-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T. H. Oosterkamp & T. Fujisawa & W. G. van der Wiel & K. Ishibashi & R. V. Hijman & S. Tarucha & L. P. Kouwenhoven, 1998. "Microwave spectroscopy of a quantum-dot molecule," Nature, Nature, vol. 395(6705), pages 873-876, October.
    2. T. Hensgens & T. Fujita & L. Janssen & Xiao Li & C. J. Van Diepen & C. Reichl & W. Wegscheider & S. Das Sarma & L. M. K. Vandersypen, 2017. "Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array," Nature, Nature, vol. 548(7665), pages 70-73, August.
    3. Y. He & S. K. Gorman & D. Keith & L. Kranz & J. G. Keizer & M. Y. Simmons, 2019. "A two-qubit gate between phosphorus donor electrons in silicon," Nature, Nature, vol. 571(7765), pages 371-375, July.
    4. M. Kiczynski & S. K. Gorman & H. Geng & M. B. Donnelly & Y. Chung & Y. He & J. G. Keizer & M. Y. Simmons, 2022. "Engineering topological states in atom-based semiconductor quantum dots," Nature, Nature, vol. 606(7915), pages 694-699, June.
    5. Yang Xu & Song Liu & Daniel A. Rhodes & Kenji Watanabe & Takashi Taniguchi & James Hone & Veit Elser & Kin Fai Mak & Jie Shan, 2020. "Correlated insulating states at fractional fillings of moiré superlattices," Nature, Nature, vol. 587(7833), pages 214-218, November.
    6. J. P. Dehollain & U. Mukhopadhyay & V. P. Michal & Y. Wang & B. Wunsch & C. Reichl & W. Wegscheider & M. S. Rudner & E. Demler & L. M. K. Vandersypen, 2020. "Nagaoka ferromagnetism observed in a quantum dot plaquette," Nature, Nature, vol. 579(7800), pages 528-533, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suman Chatterjee & Medha Dandu & Pushkar Dasika & Rabindra Biswas & Sarthak Das & Kenji Watanabe & Takashi Taniguchi & Varun Raghunathan & Kausik Majumdar, 2023. "Harmonic to anharmonic tuning of moiré potential leading to unconventional Stark effect and giant dipolar repulsion in WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Junxiong Hu & Junyou Tan & Mohammed M. Al Ezzi & Udvas Chattopadhyay & Jian Gou & Yuntian Zheng & Zihao Wang & Jiayu Chen & Reshmi Thottathil & Jiangbo Luo & Kenji Watanabe & Takashi Taniguchi & Andre, 2023. "Controlled alignment of supermoiré lattice in double-aligned graphene heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. David Barcons Ruiz & Hanan Herzig Sheinfux & Rebecca Hoffmann & Iacopo Torre & Hitesh Agarwal & Roshan Krishna Kumar & Lorenzo Vistoli & Takashi Taniguchi & Kenji Watanabe & Adrian Bachtold & Frank H., 2022. "Engineering high quality graphene superlattices via ion milled ultra-thin etching masks," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Yuting Tan & Pak Ki Henry Tsang & Vladimir Dobrosavljević, 2022. "Disorder-dominated quantum criticality in moiré bilayers," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    5. Skavysh, Vladimir & Priazhkina, Sofia & Guala, Diego & Bromley, Thomas R., 2023. "Quantum monte carlo for economics: Stress testing and macroeconomic deep learning," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    6. Yanhao Tang & Jie Gu & Song Liu & Kenji Watanabe & Takashi Taniguchi & James C. Hone & Kin Fai Mak & Jie Shan, 2022. "Dielectric catastrophe at the Wigner-Mott transition in a moiré superlattice," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Hongbing Cai & Abdullah Rasmita & Qinghai Tan & Jia-Min Lai & Ruihua He & Xiangbin Cai & Yan Zhao & Disheng Chen & Naizhou Wang & Zhao Mu & Zumeng Huang & Zhaowei Zhang & John J. H. Eng & Yuanda Liu &, 2023. "Interlayer donor-acceptor pair excitons in MoSe2/WSe2 moiré heterobilayer," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Yi Liu & Johan V. Knutsson & Nathaniel Wilson & Elliot Young & Sebastian Lehmann & Kimberly A. Dick & Chris J. Palmstrøm & Anders Mikkelsen & Rainer Timm, 2021. "Self-selective formation of ordered 1D and 2D GaBi structures on wurtzite GaAs nanowire surfaces," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    9. Procopios Constantinou & Taylor J. Z. Stock & Li-Ting Tseng & Dimitrios Kazazis & Matthias Muntwiler & Carlos A. F. Vaz & Yasin Ekinci & Gabriel Aeppli & Neil J. Curson & Steven R. Schofield, 2024. "EUV-induced hydrogen desorption as a step towards large-scale silicon quantum device patterning," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Trithep Devakul & Valentin Crépel & Yang Zhang & Liang Fu, 2021. "Magic in twisted transition metal dichalcogenide bilayers," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Elliot J. Connors & J. Nelson & Lisa F. Edge & John M. Nichol, 2022. "Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. L. Banszerus & K. Hecker & S. Möller & E. Icking & K. Watanabe & T. Taniguchi & C. Volk & C. Stampfer, 2022. "Spin relaxation in a single-electron graphene quantum dot," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    13. K. Hecker & L. Banszerus & A. Schäpers & S. Möller & A. Peters & E. Icking & K. Watanabe & T. Taniguchi & C. Volk & C. Stampfer, 2023. "Coherent charge oscillations in a bilayer graphene double quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Elena Blundo & Federico Tuzi & Salvatore Cianci & Marzia Cuccu & Katarzyna Olkowska-Pucko & Łucja Kipczak & Giorgio Contestabile & Antonio Miriametro & Marco Felici & Giorgio Pettinari & Takashi Tanig, 2024. "Localisation-to-delocalisation transition of moiré excitons in WSe2/MoSe2 heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Zeya Li & Junwei Huang & Ling Zhou & Zian Xu & Feng Qin & Peng Chen & Xiaojun Sun & Gan Liu & Chengqi Sui & Caiyu Qiu & Yangfan Lu & Huiyang Gou & Xiaoxiang Xi & Toshiya Ideue & Peizhe Tang & Yoshihir, 2023. "An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Madeline Winkle & Isaac M. Craig & Stephen Carr & Medha Dandu & Karen C. Bustillo & Jim Ciston & Colin Ophus & Takashi Taniguchi & Kenji Watanabe & Archana Raja & Sinéad M. Griffin & D. Kwabena Bediak, 2023. "Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Feifei Xiang & Lysander Huberich & Preston A. Vargas & Riccardo Torsi & Jonas Allerbeck & Anne Marie Z. Tan & Chengye Dong & Pascal Ruffieux & Roman Fasel & Oliver Gröning & Yu-Chuan Lin & Richard G. , 2024. "Charge state-dependent symmetry breaking of atomic defects in transition metal dichalcogenides," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Alessandra Di Gaspare & Chao Song & Chiara Schiattarella & Lianhe H. Li & Mohammed Salih & A. Giles Davies & Edmund H. Linfield & Jincan Zhang & Osman Balci & Andrea C. Ferrari & Sukhdeep Dhillon & Mi, 2024. "Compact terahertz harmonic generation in the Reststrahlenband using a graphene-embedded metallic split ring resonator array," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34220-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.