IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34126-7.html
   My bibliography  Save this article

The influence of recent and future climate change on spring Arctic cyclones

Author

Listed:
  • Chelsea L. Parker

    (NASA Goddard Space Flight Center
    University of Maryland)

  • Priscilla A. Mooney

    (Bjerknes Centre for Climate Research)

  • Melinda A. Webster

    (Geophysical Institute)

  • Linette N. Boisvert

    (NASA Goddard Space Flight Center)

Abstract

In recent decades, the Arctic has experienced rapid atmospheric warming and sea ice loss, with an ice-free Arctic projected by the end of this century. Cyclones are synoptic weather events that transport heat and moisture into the Arctic, and have complex impacts on sea ice, and the local and global climate. However, the effect of a changing climate on Arctic cyclone behavior remains poorly understood. This study uses high resolution (4 km), regional modeling techniques and downscaled global climate reconstructions and projections to examine how recent and future climatic changes alter cyclone behavior. Results suggest that recent climate change has not yet had an appreciable effect on Arctic cyclone characteristics. However, future sea ice loss and increasing surface temperatures drive large increases in the near-surface temperature gradient, sensible and latent heat fluxes, and convection during cyclones. The future climate can alter cyclone trajectories and increase and prolong intensity with greatly augmented wind speeds, temperatures, and precipitation. Such changes in cyclone characteristics could exacerbate sea ice loss and Arctic warming through positive feedbacks. The increasing extreme nature of these weather events has implications for local ecosystems, communities, and socio-economic activities.

Suggested Citation

  • Chelsea L. Parker & Priscilla A. Mooney & Melinda A. Webster & Linette N. Boisvert, 2022. "The influence of recent and future climate change on spring Arctic cyclones," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34126-7
    DOI: 10.1038/s41467-022-34126-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34126-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34126-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Clara Deser & Reto Knutti & Susan Solomon & Adam S. Phillips, 2012. "Communication of the role of natural variability in future North American climate," Nature Climate Change, Nature, vol. 2(11), pages 775-779, November.
    2. Josefino C. Comiso & Dorothy K. Hall, 2014. "Climate trends in the Arctic as observed from space," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 5(3), pages 389-409, May.
    3. M. A. Webster & C. Parker & L. Boisvert & R. Kwok, 2019. "The role of cyclone activity in snow accumulation on Arctic sea ice," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    4. James A. Screen & Ian Simmonds, 2010. "The central role of diminishing sea ice in recent Arctic temperature amplification," Nature, Nature, vol. 464(7293), pages 1334-1337, April.
    5. R. Bintanja & F. M. Selten, 2014. "Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat," Nature, Nature, vol. 509(7501), pages 479-482, May.
    6. Clara Deser & Reto Knutti & Susan Solomon & Adam S. Phillips, 2012. "Erratum: Communication of the role of natural variability in future North American climate," Nature Climate Change, Nature, vol. 2(12), pages 888-888, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher W. Callahan & Justin S. Mankin, 2022. "National attribution of historical climate damages," Climatic Change, Springer, vol. 172(3), pages 1-19, June.
    2. Lu Dong & L. Ruby Leung & Fengfei Song & Jian Lu, 2021. "Uncertainty in El Niño-like warming and California precipitation changes linked by the Interdecadal Pacific Oscillation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Cha Zhao & François Brissette, 2022. "Impacts of large-scale oscillations on climate variability over North America," Climatic Change, Springer, vol. 173(1), pages 1-21, July.
    5. Zhaomin Ding & Panmao Zhai & Renguang Wu, 2024. "Impacts of anthropogenic forcing and internal variability on the rapid warming over the Tibetan Plateau," Climatic Change, Springer, vol. 177(1), pages 1-22, January.
    6. Andrew Kliskey & Paula Williams & John T. Abatzoglou & Lilian Alessa & Richard B. Lammers, 2019. "Enhancing a community-based water resource tool for assessing environmental change: the arctic water resources vulnerability index revisited," Environment Systems and Decisions, Springer, vol. 39(2), pages 183-197, June.
    7. Michael R. Grose & James S. Risbey & Penny H. Whetton, 2017. "Tracking regional temperature projections from the early 1990s in light of variations in regional warming, including ‘warming holes’," Climatic Change, Springer, vol. 140(2), pages 307-322, January.
    8. S. Camici & L. Brocca & T. Moramarco, 2017. "Accuracy versus variability of climate projections for flood assessment in central Italy," Climatic Change, Springer, vol. 141(2), pages 273-286, March.
    9. Chenyao Yang & Helder Fraga & Wim Ieperen & Henrique Trindade & João A. Santos, 2019. "Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal," Climatic Change, Springer, vol. 154(1), pages 159-178, May.
    10. Elizabeth Kopits & Alex L. Marten & Ann Wolverton, 2013. "Moving Forward with Incorporating "Catastrophic" Climate Change into Policy Analysis," NCEE Working Paper Series 201301, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2013.
    11. Charles D. Kolstad & Frances C. Moore, 2019. "Estimating the Economic Impacts of Climate Change Using Weather Observations," NBER Working Papers 25537, National Bureau of Economic Research, Inc.
    12. Shuai-Lei Yao & Jing-Jia Luo & Gang Huang, 2016. "Internal Variability-Generated Uncertainty in East Asian Climate Projections Estimated with 40 CCSM3 Ensembles," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-12, March.
    13. Jordi Cristóbal & Patrick Graham & Marcel Buchhorn & Anupma Prakash, 2016. "A New Integrated High-Latitude Thermal Laboratory for the Characterization of Land Surface Processes in Alaska’s Arctic and Boreal Regions," Data, MDPI, vol. 1(2), pages 1-9, September.
    14. Chuya Wang & Minghu Ding & Yuande Yang & Ting Wei & Tingfeng Dou, 2022. "Risk Assessment of Ship Navigation in the Northwest Passage: Historical and Projection," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    15. Jennifer A. Francis & Stephen J. Vavrus & Judah Cohen, 2017. "Amplified Arctic warming and mid‐latitude weather: new perspectives on emerging connections," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(5), September.
    16. Julienne Stroeve & Mark Serreze & Marika Holland & Jennifer Kay & James Malanik & Andrew Barrett, 2012. "The Arctic’s rapidly shrinking sea ice cover: a research synthesis," Climatic Change, Springer, vol. 110(3), pages 1005-1027, February.
    17. R. Macdonald & Z. Kuzyk & S. Johannessen, 2015. "It is not just about the ice: a geochemical perspective on the changing Arctic Ocean," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(3), pages 288-301, September.
    18. Flavio Lehner & Clara Deser & Benjamin M. Sanderson, 2018. "Future risk of record-breaking summer temperatures and its mitigation," Climatic Change, Springer, vol. 146(3), pages 363-375, February.
    19. Clifford Chuwah & Twan Noije & Detlef P. Vuuren & Philippe Sager & Wilco Hazeleger, 2016. "Global and regional climate impacts of future aerosol mitigation in an RCP6.0-like scenario in EC-Earth," Climatic Change, Springer, vol. 134(1), pages 1-14, January.
    20. Matto Mildenberger & Peter Howe & Erick Lachapelle & Leah Stokes & Jennifer Marlon & Timothy Gravelle, 2016. "The Distribution of Climate Change Public Opinion in Canada," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-14, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34126-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.