IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33992-5.html
   My bibliography  Save this article

Dimensional reduction and incommensurate dynamic correlations in the $$S=\frac{1}{2}$$ S = 1 2 triangular-lattice antiferromagnet Ca3ReO5Cl2

Author

Listed:
  • S. A. Zvyagin

    (Dresden High Magnetic Field Laboratory (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat, Helmholtz-Zentrum Dresden-Rossendorf)

  • A. N. Ponomaryov

    (Dresden High Magnetic Field Laboratory (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat, Helmholtz-Zentrum Dresden-Rossendorf
    Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf)

  • J. Wosnitza

    (Dresden High Magnetic Field Laboratory (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat, Helmholtz-Zentrum Dresden-Rossendorf
    TU Dresden)

  • D. Hirai

    (University of Tokyo)

  • Z. Hiroi

    (University of Tokyo)

  • M. Gen

    (University of Tokyo)

  • Y. Kohama

    (University of Tokyo)

  • A. Matsuo

    (University of Tokyo)

  • Y. H. Matsuda

    (University of Tokyo)

  • K. Kindo

    (University of Tokyo)

Abstract

The observation of spinon excitations in the $$S=\frac{1}{2}$$ S = 1 2 triangular antiferromagnet Ca3ReO5Cl2 reveals a quasi-one-dimensional (1D) nature of magnetic correlations, in spite of the nominally 2D magnetic structure. This phenomenon is known as frustration-induced dimensional reduction. Here, we present high-field electron spin resonance spectroscopy and magnetization studies of Ca3ReO5Cl2, allowing us not only to refine spin-Hamiltonian parameters, but also to investigate peculiarities of its low-energy spin dynamics. We argue that the presence of the uniform Dzyaloshinskii-Moriya interaction (DMI) shifts the spinon continuum in momentum space and, as a result, opens a zero-field gap at the Γ point. We observed this gap directly. The shift is found to be consistent with the structural modulation in the ordered state, suggesting this material as a perfect model triangular-lattice system, where a pure DMI-spiral ground state can be realized.

Suggested Citation

  • S. A. Zvyagin & A. N. Ponomaryov & J. Wosnitza & D. Hirai & Z. Hiroi & M. Gen & Y. Kohama & A. Matsuo & Y. H. Matsuda & K. Kindo, 2022. "Dimensional reduction and incommensurate dynamic correlations in the $$S=\frac{1}{2}$$ S = 1 2 triangular-lattice antiferromagnet Ca3ReO5Cl2," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33992-5
    DOI: 10.1038/s41467-022-33992-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33992-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33992-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Youngsu Choi & Suheon Lee & Je-Ho Lee & Seungyeol Lee & Maeng-Je Seong & Kwang-Yong Choi, 2021. "Bosonic spinons in anisotropic triangular antiferromagnets," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Leon Balents, 2010. "Spin liquids in frustrated magnets," Nature, Nature, vol. 464(7286), pages 199-208, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Xiang & Qing Li & Yongkai Li & Wei Xie & Huan Yang & Zhiwei Wang & Yugui Yao & Hai-Hu Wen, 2021. "Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Schmidt, M. & Zimmer, F.M. & Magalhaes, S.G., 2015. "Spin glass induced by infinitesimal disorder in geometrically frustrated kagome lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 416-423.
    3. Youngsu Choi & Suheon Lee & Je-Ho Lee & Seungyeol Lee & Maeng-Je Seong & Kwang-Yong Choi, 2021. "Bosonic spinons in anisotropic triangular antiferromagnets," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Alejandro Lopez-Bezanilla & Jack Raymond & Kelly Boothby & Juan Carrasquilla & Cristiano Nisoli & Andrew D. King, 2023. "Kagome qubit ice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Alessio Chiocchetta & Dominik Kiese & Carl Philipp Zelle & Francesco Piazza & Sebastian Diehl, 2021. "Cavity-induced quantum spin liquids," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Xu-Guang Zhou & Han Li & Yasuhiro H. Matsuda & Akira Matsuo & Wei Li & Nobuyuki Kurita & Gang Su & Koichi Kindo & Hidekazu Tanaka, 2023. "Possible intermediate quantum spin liquid phase in α-RuCl3 under high magnetic fields up to 100 T," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Jiangang Yang & Xinwei Yi & Zhen Zhao & Yuyang Xie & Taimin Miao & Hailan Luo & Hao Chen & Bo Liang & Wenpei Zhu & Yuhan Ye & Jing-Yang You & Bo Gu & Shenjin Zhang & Fengfeng Zhang & Feng Yang & Zhimi, 2023. "Observation of flat band, Dirac nodal lines and topological surface states in Kagome superconductor CsTi3Bi5," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Shingo Toyoda & Manfred Fiebig & Lea Forster & Taka-hisa Arima & Yoshinori Tokura & Naoki Ogawa, 2021. "Writing of strain-controlled multiferroic ribbons into MnWO4," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    9. Bin Gao & Tong Chen & Xiao-Chuan Wu & Michael Flynn & Chunruo Duan & Lebing Chen & Chien-Lung Huang & Jesse Liebman & Shuyi Li & Feng Ye & Matthew B. Stone & Andrey Podlesnyak & Douglas L. Abernathy &, 2023. "Diffusive excitonic bands from frustrated triangular sublattice in a singlet-ground-state system," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Tao Hong & Tao Ying & Qing Huang & Sachith E. Dissanayake & Yiming Qiu & Mark M. Turnbull & Andrey A. Podlesnyak & Yan Wu & Huibo Cao & Yaohua Liu & Izuru Umehara & Jun Gouchi & Yoshiya Uwatoko & Masa, 2022. "Evidence for pressure induced unconventional quantum criticality in the coupled spin ladder antiferromagnet C9H18N2CuBr4," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. A. Pustogow & Y. Kawasugi & H. Sakurakoji & N. Tajima, 2023. "Chasing the spin gap through the phase diagram of a frustrated Mott insulator," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    12. Yuki Nakata & Katsuaki Sugawara & Ashish Chainani & Hirofumi Oka & Changhua Bao & Shaohua Zhou & Pei-Yu Chuang & Cheng-Maw Cheng & Tappei Kawakami & Yasuaki Saruta & Tomoteru Fukumura & Shuyun Zhou & , 2021. "Robust charge-density wave strengthened by electron correlations in monolayer 1T-TaSe2 and 1T-NbSe2," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    13. Daisuke Yamamoto & Takahiro Sakurai & Ryosuke Okuto & Susumu Okubo & Hitoshi Ohta & Hidekazu Tanaka & Yoshiya Uwatoko, 2021. "Continuous control of classical-quantum crossover by external high pressure in the coupled chain compound CsCuCl3," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    14. Han Zhang & Chengkun Xing & Kyle Noordhoek & Zhaoyu Liu & Tianhao Zhao & Lukas Horák & Qing Huang & Lin Hao & Junyi Yang & Shashi Pandey & Elbio Dagotto & Zhigang Jiang & Jiun-Haw Chu & Yan Xin & Eun , 2023. "Anomalous magnetoresistance by breaking ice rule in Bi2Ir2O7/Dy2Ti2O7 heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Mengzhu Shi & Fanghang Yu & Ye Yang & Fanbao Meng & Bin Lei & Yang Luo & Zhe Sun & Junfeng He & Rui Wang & Zhicheng Jiang & Zhengtai Liu & Dawei Shen & Tao Wu & Zhenyu Wang & Ziji Xiang & Jianjun Ying, 2022. "A new class of bilayer kagome lattice compounds with Dirac nodal lines and pressure-induced superconductivity," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    16. Jordyn Hales & Utkarsh Bajpai & Tongtong Liu & Denitsa R. Baykusheva & Mingda Li & Matteo Mitrano & Yao Wang, 2023. "Witnessing light-driven entanglement using time-resolved resonant inelastic X-ray scattering," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Madalynn Marshall & Brianna R. Billingsley & Xiaojian Bai & Qianli Ma & Tai Kong & Huibo Cao, 2023. "Field-induced partial disorder in a Shastry-Sutherland lattice," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    18. Quanzhen Zhang & Wen-Yu He & Yu Zhang & Yaoyao Chen & Liangguang Jia & Yanhui Hou & Hongyan Ji & Huixia Yang & Teng Zhang & Liwei Liu & Hong-Jun Gao & Thomas A. Jung & Yeliang Wang, 2024. "Quantum spin liquid signatures in monolayer 1T-NbSe2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33992-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.