IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33892-8.html
   My bibliography  Save this article

Designing fuel cell catalyst support for superior catalytic activity and low mass-transport resistance

Author

Listed:
  • Muhammad Naoshad Islam

    (University of Calgary)

  • Abdul Bashith Mansoor Basha

    (University of Calgary)

  • Vinayaraj Ozhukil Kollath

    (University of Calgary)

  • Amir Peyman Soleymani

    (University of Connecticut)

  • Jasna Jankovic

    (University of Connecticut)

  • Kunal Karan

    (University of Calgary)

Abstract

The development of low-Platinum content polymer electrolyte fuel cells (PEFCs) has been hindered by inexplicable reduction of oxygen reduction reaction (ORR) activity and unexpected O2 mass transport resistance when catalysts have been interfaced with ionomer in a cathode catalyst layer. In this study, we introduce a bottom-up designed spherical carbon support with intrinsic Nitrogen-doping that permits uniform dispersion of Pt catalyst, which reproducibly exhibits high ORR mass activity of 638 ± 68 mA mgPt−1 at 0.9 V and 100% relative humidity (RH) in a membrane electrode assembly. The uniformly distributed Nitrogen-functional surface groups on the carbon support surface promote high ionomer coverage directly evidenced by high-resolution electron microscopy and nearly humidity-independent double layer capacitance. The hydrophilic nature of the carbon surface appears to ensure high activity and performance for operation over a broad range of RH. The paradigm challenging large carbon support (~135 nm) combined with favourable ionomer film structure, hypothesized recently to arise from the interactions of an ionic moiety of the ionomer and Nitrogen-functional group of the catalyst support, results in an unprecedented low local oxygen transport resistance (5.0 s cm−1) for ultra-low Pt loading (34 ± 2 μgPt cm−2) catalyst layer.

Suggested Citation

  • Muhammad Naoshad Islam & Abdul Bashith Mansoor Basha & Vinayaraj Ozhukil Kollath & Amir Peyman Soleymani & Jasna Jankovic & Kunal Karan, 2022. "Designing fuel cell catalyst support for superior catalytic activity and low mass-transport resistance," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33892-8
    DOI: 10.1038/s41467-022-33892-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33892-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33892-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaofeng Xiao & Zechao Zhuang & Shuhu Yin & Jiexin Zhu & Tao Gan & Ruohan Yu & Jinsong Wu & Xiaochun Tian & Yanxia Jiang & Dingsheng Wang & Feng Zhao, 2024. "Topological transformation of microbial proteins into iron single-atom sites for selective hydrogen peroxide electrosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33892-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.