IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33329-2.html
   My bibliography  Save this article

Strain-regulated Gibbs free energy enables reversible redox chemistry of chalcogenides for sodium ion batteries

Author

Listed:
  • Minxia Jiang

    (Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology)

  • Yingjie Hu

    (Nanjing Xiaozhuang University)

  • Baoguang Mao

    (Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology)

  • Yixin Wang

    (Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology)

  • Zhen Yang

    (Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology)

  • Tao Meng

    (Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology)

  • Xin Wang

    (Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology)

  • Minhua Cao

    (Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology)

Abstract

Manipulating the reversible redox chemistry of transition metal dichalcogenides for energy storage often faces great challenges as it is difficult to regulate the discharged products directly. Herein we report that tensile-strained MoSe2 (TS-MoSe2) can act as a host to transfer its strain to corresponding discharged product Mo, thus contributing to the regulation of Gibbs free energy change (ΔG) and enabling a reversible sodium storage mechanism. The inherited strain results in lattice distortion of Mo, which adjusts the d-band center upshifted closer to the Fermi level to enhance the adsorbability of Na2Se, thereby leading to a decreased ΔG of the redox chemistry between Mo/Na2Se and MoSe2. Ex situ and in situ experiments revealed that, unlike the unstrained MoSe2, TS-MoSe2 shows a highly reversible sodium storage, along with an evidently improved reaction kinetics. This work sheds light on the study on electrochemical energy storage mechanism of other electrode materials.

Suggested Citation

  • Minxia Jiang & Yingjie Hu & Baoguang Mao & Yixin Wang & Zhen Yang & Tao Meng & Xin Wang & Minhua Cao, 2022. "Strain-regulated Gibbs free energy enables reversible redox chemistry of chalcogenides for sodium ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33329-2
    DOI: 10.1038/s41467-022-33329-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33329-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33329-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei Liu & Seok Woo Lee & Dingchang Lin & Feifei Shi & Shuang Wang & Austin D. Sendek & Yi Cui, 2017. "Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires," Nature Energy, Nature, vol. 2(5), pages 1-7, May.
    2. Fang Liu & Geng Sun & Hao Bin Wu & Gen Chen & Duo Xu & Runwei Mo & Li Shen & Xianyang Li & Shengxiang Ma & Ran Tao & Xinru Li & Xinyi Tan & Bin Xu & Ge Wang & Bruce S. Dunn & Philippe Sautet & Yunfeng, 2020. "Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Kaikai Li & Jun Zhang & Dongmei Lin & Da-Wei Wang & Baohua Li & Wei Lv & Sheng Sun & Yan-Bing He & Feiyu Kang & Quan-Hong Yang & Limin Zhou & Tong-Yi Zhang, 2019. "Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Landon Oakes & Rachel Carter & Trevor Hanken & Adam P. Cohn & Keith Share & Benjamin Schmidt & Cary L. Pint, 2016. "Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
    5. Kaikai Li & Jun Zhang & Dongmei Lin & Da-Wei Wang & Baohua Li & Wei Lv & Sheng Sun & Yan-Bing He & Feiyu Kang & Quan-Hong Yang & Limin Zhou & Tong-Yi Zhang, 2019. "Author Correction: Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    6. Yimu Chen & Yusheng Lei & Yuheng Li & Yugang Yu & Jinze Cai & Ming-Hui Chiu & Rahul Rao & Yue Gu & Chunfeng Wang & Woojin Choi & Hongjie Hu & Chonghe Wang & Yang Li & Jiawei Song & Jingxin Zhang & Bai, 2020. "Strain engineering and epitaxial stabilization of halide perovskites," Nature, Nature, vol. 577(7789), pages 209-215, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiulong Wei & Xiaoqing Chang & Danielle Butts & Ryan DeBlock & Kun Lan & Junbin Li & Dongliang Chao & Dong-Liang Peng & Bruce Dunn, 2023. "Surface-redox sodium-ion storage in anatase titanium oxide," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Perveen, Tahira & Siddiq, Muhammad & Shahzad, Nadia & Ihsan, Rida & Ahmad, Abrar & Shahzad, Muhammad Imran, 2020. "Prospects in anode materials for sodium ion batteries - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Yue, Xiyan & Qiao, Bozheng & Wang, Jiajia & Xie, Zhengkun & Liu, Zhao & Yang, Zhengpeng & Abudula, Abuliti & Guan, Guoqing, 2023. "Layered metal chalcogenide based anode materials for high performance sodium ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Julian A. Steele & Tom Braeckevelt & Vittal Prakasam & Giedrius Degutis & Haifeng Yuan & Handong Jin & Eduardo Solano & Pascal Puech & Shreya Basak & Maria Isabel Pintor-Monroy & Hans Gorp & Guillaume, 2022. "An embedded interfacial network stabilizes inorganic CsPbI3 perovskite thin films," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Da Liu & Yichu Zheng & Xin Yuan Sui & Xue Feng Wu & Can Zou & Yu Peng & Xinyi Liu & Miaoyu Lin & Zhanpeng Wei & Hang Zhou & Ye-Feng Yao & Sheng Dai & Haiyang Yuan & Hua Gui Yang & Shuang Yang & Yu Hou, 2024. "Universal growth of perovskite thin monocrystals from high solute flux for sensitive self-driven X-ray detection," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Yuhang Liang & Feng Li & Xiangyuan Cui & Taoyuze Lv & Catherine Stampfl & Simon P. Ringer & Xudong Yang & Jun Huang & Rongkun Zheng, 2024. "Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Ilya Svetlizky & Seongsoo Kim & David A. Weitz & Frans Spaepen, 2023. "Dislocation interactions during plastic relaxation of epitaxial colloidal crystals," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Shucheng Wang & Liuyang Han & Hanxiao Liu & Ying Dong & Xiaohao Wang, 2022. "Ionic Gelatin-Based Flexible Thermoelectric Generator with Scalability for Human Body Heat Harvesting," Energies, MDPI, vol. 15(9), pages 1-18, May.
    9. Yun Su & Xiaohui Rong & Ang Gao & Yuan Liu & Jianwei Li & Minglei Mao & Xingguo Qi & Guoliang Chai & Qinghua Zhang & Liumin Suo & Lin Gu & Hong Li & Xuejie Huang & Liquan Chen & Binyuan Liu & Yong-She, 2022. "Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Ziyu Song & Fangfang Chen & Maria Martinez-Ibañez & Wenfang Feng & Maria Forsyth & Zhibin Zhou & Michel Armand & Heng Zhang, 2023. "A reflection on polymer electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Xinlong Wang & Zhiqin Ying & Jingming Zheng & Xin Li & Zhipeng Zhang & Chuanxiao Xiao & Ying Chen & Ming Wu & Zhenhai Yang & Jingsong Sun & Jia-Ru Xu & Jiang Sheng & Yuheng Zeng & Xi Yang & Guichuan X, 2023. "Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Zongjie Sun & Kai Xi & Jing Chen & Amor Abdelkader & Meng-Yang Li & Yuanyuan Qin & Yue Lin & Qiu Jiang & Ya-Qiong Su & R. Vasant Kumar & Shujiang Ding, 2022. "Expanding the active charge carriers of polymer electrolytes in lithium-based batteries using an anion-hosting cathode," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Hiram Kwak & Jae-Seung Kim & Daseul Han & Jong Seok Kim & Juhyoun Park & Gihan Kwon & Seong-Min Bak & Unseon Heo & Changhyun Park & Hyun-Wook Lee & Kyung-Wan Nam & Dong-Hwa Seo & Yoon Seok Jung, 2023. "Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33329-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.