IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32732-z.html
   My bibliography  Save this article

Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption

Author

Listed:
  • Haowen Gao

    (Xiamen University)

  • Xin Ai

    (Huazhong University of Science and Technology)

  • Hongchun Wang

    (Xiamen University)

  • Wangqin Li

    (Xiamen University)

  • Ping Wei

    (Xiamen University)

  • Yong Cheng

    (Xiamen University)

  • Siwei Gui

    (Huazhong University of Science and Technology)

  • Hui Yang

    (Huazhong University of Science and Technology)

  • Yong Yang

    (Xiamen University)

  • Ming-Sheng Wang

    (Xiamen University)

Abstract

Solid electrolytes hold the promise for enabling high-performance lithium (Li) metal batteries, but suffer from Li-filament penetration issues. The mechanism of this rate-dependent failure, especially the impact of the electrochemo-mechanical attack from Li deposition, remains elusive. Herein, we reveal the Li deposition dynamics and associated failure mechanism of solid electrolyte by visualizing the Li|Li7La3Zr2O12 (LLZO) interface evolution via in situ transmission electron microscopy (TEM). Under a strong mechanical constraint and low charging rate, the Li-deposition-induced stress enables the single-crystal Li to laterally expand on LLZO. However, upon Li “eruption”, the rapidly built-up local stress, reaching at least GPa level, can even crack single-crystal LLZO particles without apparent defects. In comparison, Li vertical growth by weakening the mechanical constraint can boost the local current density up to A·cm−2 level without damaging LLZO. Our results demonstrate that the crack initiation at the Li|LLZO interface depends strongly on not only the local current density but also the way and efficiency of mass/stress release. Finally, potential strategies enabling fast Li transport and stress relaxation at the interface are proposed for promoting the rate capability of solid electrolytes.

Suggested Citation

  • Haowen Gao & Xin Ai & Hongchun Wang & Wangqin Li & Ping Wei & Yong Cheng & Siwei Gui & Hui Yang & Yong Yang & Ming-Sheng Wang, 2022. "Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32732-z
    DOI: 10.1038/s41467-022-32732-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32732-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32732-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuming Chen & Ziqiang Wang & Xiaoyan Li & Xiahui Yao & Chao Wang & Yutao Li & Weijiang Xue & Daiwei Yu & So Yeon Kim & Fei Yang & Akihiro Kushima & Guoge Zhang & Haitao Huang & Nan Wu & Yiu-Wing Mai &, 2020. "Li metal deposition and stripping in a solid-state battery via Coble creep," Nature, Nature, vol. 578(7794), pages 251-255, February.
    2. Yong-Gun Lee & Satoshi Fujiki & Changhoon Jung & Naoki Suzuki & Nobuyoshi Yashiro & Ryo Omoda & Dong-Su Ko & Tomoyuki Shiratsuchi & Toshinori Sugimoto & Saebom Ryu & Jun Hwan Ku & Taku Watanabe & Youn, 2020. "High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes," Nature Energy, Nature, vol. 5(4), pages 299-308, April.
    3. Michael J. Wang & Eric Carmona & Arushi Gupta & Paul Albertus & Jeff Sakamoto, 2020. "Publisher Correction: Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    4. Mukul D. Tikekar & Snehashis Choudhury & Zhengyuan Tu & Lynden A. Archer, 2016. "Design principles for electrolytes and interfaces for stable lithium-metal batteries," Nature Energy, Nature, vol. 1(9), pages 1-7, September.
    5. Michael J. Wang & Eric Carmona & Arushi Gupta & Paul Albertus & Jeff Sakamoto, 2020. "Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ju-Sik Kim & Gabin Yoon & Sewon Kim & Shoichi Sugata & Nobuyoshi Yashiro & Shinya Suzuki & Myung-Jin Lee & Ryounghee Kim & Michael Badding & Zhen Song & JaeMyung Chang & Dongmin Im, 2023. "Surface engineering of inorganic solid-state electrolytes via interlayers strategy for developing long-cycling quasi-all-solid-state lithium batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Shuting Luo & Zhenyu Wang & Xuelei Li & Xinyu Liu & Haidong Wang & Weigang Ma & Lianqi Zhang & Lingyun Zhu & Xing Zhang, 2021. "Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Xin He & Jonathan M. Larson & Hans A. Bechtel & Robert Kostecki, 2022. "In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Chao Zhu & Till Fuchs & Stefan A. L. Weber & Felix. H. Richter & Gunnar Glasser & Franjo Weber & Hans-Jürgen Butt & Jürgen Janek & Rüdiger Berger, 2023. "Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Shuo Jin & Jiefu Yin & Xiaosi Gao & Arpita Sharma & Pengyu Chen & Shifeng Hong & Qing Zhao & Jingxu Zheng & Yue Deng & Yong Lak Joo & Lynden A. Archer, 2022. "Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Qiang Liu & Sisi Zhou & Cong Tang & Qiaoling Zhai & Xianggong Zhang & Rui Wang, 2018. "Li-B Alloy as an Anode Material for Stable and Long Life Lithium Metal Batteries," Energies, MDPI, vol. 11(10), pages 1-5, September.
    13. Yoon, Da Hye & Park, Yong Joon, 2022. "Effects of lithium bis(oxalato)borate-derived surface coating layers on the performances of high-Ni cathodes for all-solid-state batteries," Applied Energy, Elsevier, vol. 326(C).
    14. Yuzhao Liu & Xiangyu Meng & Zhiyu Wang & Jieshan Qiu, 2022. "Development of quasi-solid-state anode-free high-energy lithium sulfide-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Qian Wu & Mandi Fang & Shizhe Jiao & Siyuan Li & Shichao Zhang & Zeyu Shen & Shulan Mao & Jiale Mao & Jiahui Zhang & Yuanzhong Tan & Kang Shen & Jiaxing Lv & Wei Hu & Yi He & Yingying Lu, 2023. "Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Xiao Zhan & Miao Li & Xiaolin Zhao & Yaning Wang & Sha Li & Weiwei Wang & Jiande Lin & Zi-Ang Nan & Jiawei Yan & Zhefei Sun & Haodong Liu & Fei Wang & Jiayu Wan & Jianjun Liu & Qiaobao Zhang & Li Zhan, 2024. "Self-assembled hydrated copper coordination compounds as ionic conductors for room temperature solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Menghao Yang & Yunsheng Liu & Yifei Mo, 2023. "Lithium crystallization at solid interfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Pushun Lu & Yu Xia & Guochen Sun & Dengxu Wu & Siyuan Wu & Wenlin Yan & Xiang Zhu & Jiaze Lu & Quanhai Niu & Shaochen Shi & Zhengju Sha & Liquan Chen & Hong Li & Fan Wu, 2023. "Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Qing Zhao & Yue Deng & Nyalaliska W. Utomo & Jingxu Zheng & Prayag Biswal & Jiefu Yin & Lynden A. Archer, 2021. "On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    20. Ziteng Liang & Yuxuan Xiang & Kangjun Wang & Jianping Zhu & Yanting Jin & Hongchun Wang & Bizhu Zheng & Zirong Chen & Mingming Tao & Xiangsi Liu & Yuqi Wu & Riqiang Fu & Chunsheng Wang & Martin Winter, 2023. "Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32732-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.