IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32371-4.html
   My bibliography  Save this article

A CRISPR-based ultrasensitive assay detects attomolar concentrations of SARS-CoV-2 antibodies in clinical samples

Author

Listed:
  • Yanan Tang

    (Sichuan University)

  • Turun Song

    (Sichuan University)

  • Lu Gao

    (Sichuan University)

  • Saifu Yin

    (Sichuan University)

  • Ming Ma

    (Sichuan University)

  • Yun Tan

    (Sichuan University)

  • Lijuan Wu

    (Sichuan University)

  • Yang Yang

    (Second Hospital Affiliated to Southern University of Science and Technology)

  • Yanqun Wang

    (the First Affiliated Hospital of Guangzhou Medical University)

  • Tao Lin

    (Sichuan University)

  • Feng Li

    (Sichuan University
    Brock University, St. Catharines)

Abstract

CRISPR diagnostics are powerful tools for detecting nucleic acids but are generally not deployable for the detection of clinically important proteins. Here, we report an ultrasensitive CRISPR-based antibody detection (UCAD) assay that translates the detection of anti-SARS-CoV-2 antibodies into CRISPR-based nucleic acid detection in a homogeneous solution and is 10,000 times more sensitive than the classic immunoassays. Clinical validation using serum samples collected from the general population (n = 197), demonstrates that UCAD has 100% sensitivity and 98.5% specificity. With ultrahigh sensitivity, UCAD enables the quantitative analysis of serum anti-SARS-CoV-2 levels in vaccinated kidney transplant recipients who are shown to produce “undetectable” anti-SARS-CoV-2 using standard immunoassay. Because of the high sensitivity and simplicity, we anticipate that, upon further clinical validation against large cohorts of clinical samples, UCAD will find wide applications for clinical uses in both centralized laboratories and point-of-care settings.

Suggested Citation

  • Yanan Tang & Turun Song & Lu Gao & Saifu Yin & Ming Ma & Yun Tan & Lijuan Wu & Yang Yang & Yanqun Wang & Tao Lin & Feng Li, 2022. "A CRISPR-based ultrasensitive assay detects attomolar concentrations of SARS-CoV-2 antibodies in clinical samples," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32371-4
    DOI: 10.1038/s41467-022-32371-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32371-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32371-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vincenzo Bronte & Sven Brandau & Shu-Hsia Chen & Mario P. Colombo & Alan B. Frey & Tim F. Greten & Susanna Mandruzzato & Peter J. Murray & Augusto Ochoa & Suzanne Ostrand-Rosenberg & Paulo C. Rodrigue, 2016. "Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
    2. Corine H. GeurtsvanKessel & Nisreen M. A. Okba & Zsofia Igloi & Susanne Bogers & Carmen W. E. Embregts & Brigitta M. Laksono & Lonneke Leijten & Casper Rokx & Bart Rijnders & Janette Rahamat-Langendoe, 2020. "An evaluation of COVID-19 serological assays informs future diagnostics and exposure assessment," Nature Communications, Nature, vol. 11(1), pages 1-5, December.
    3. Zhong Yao & Luka Drecun & Farzaneh Aboualizadeh & Sun Jin Kim & Zhijie Li & Heidi Wood & Emelissa J. Valcourt & Kathy Manguiat & Simon Plenderleith & Lily Yip & Xinliu Li & Zoe Zhong & Feng Yun Yue & , 2021. "A homogeneous split-luciferase assay for rapid and sensitive detection of anti-SARS CoV-2 antibodies," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weili Ma & Maria Cecília Oliveira-Nunes & Ke Xu & Andrew Kossenkov & Benjamin C. Reiner & Richard C. Crist & James Hayden & Qing Chen, 2023. "Type I interferon response in astrocytes promotes brain metastasis by enhancing monocytic myeloid cell recruitment," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Judith A Bouman & Julien Riou & Sebastian Bonhoeffer & Roland R Regoes, 2021. "Estimating the cumulative incidence of SARS-CoV-2 with imperfect serological tests: Exploiting cutoff-free approaches," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-19, February.
    3. Qiming Zhou & Yao Peng & Fenfen Ji & Huarong Chen & Wei Kang & Lam-Shing Chan & Hongyan Gou & Yufeng Lin & Pingmei Huang & Danyu Chen & Qinyao Wei & Hao Su & Cong Liang & Xiang Zhang & Jun Yu & Chi Ch, 2023. "Targeting of SLC25A22 boosts the immunotherapeutic response in KRAS-mutant colorectal cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Saeed Daneshmandi & Jee Eun Choi & Qi Yan & Cameron R. MacDonald & Manu Pandey & Mounika Goruganthu & Nathan Roberts & Prashant K. Singh & Richard M. Higashi & Andrew N. Lane & Teresa W-M. Fan & Jianm, 2024. "Myeloid-derived suppressor cell mitochondrial fitness governs chemotherapeutic efficacy in hematologic malignancies," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Ni Li & Qiuli Liu & Ying Han & Siyu Pei & Bisheng Cheng & Junyu Xu & Xiang Miao & Qiang Pan & Hanling Wang & Jiacheng Guo & Xuege Wang & Guoying Zhang & Yannan Lian & Wei Zhang & Yi Zang & Minjia Tan , 2022. "ARID1A loss induces polymorphonuclear myeloid-derived suppressor cell chemotaxis and promotes prostate cancer progression," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Silvia Tiberti & Carlotta Catozzi & Ottavio Croci & Mattia Ballerini & Danilo Cagnina & Chiara Soriani & Caterina Scirgolea & Zheng Gong & Jiatai He & Angeli D. Macandog & Amir Nabinejad & Carina B. N, 2022. "GZMKhigh CD8+ T effector memory cells are associated with CD15high neutrophil abundance in non-metastatic colorectal tumors and predict poor clinical outcome," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    7. Raquel S. Pereira & Rahul Kumar & Alessia Cais & Lara Paulini & Alisa Kahler & Jimena Bravo & Valentina R. Minciacchi & Theresa Krack & Eric Kowarz & Costanza Zanetti & Parimala Sonika Godavarthy & Fa, 2023. "Distinct and targetable role of calcium-sensing receptor in leukaemia," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Sun Jin Kim & Zhong Yao & Morgan C. Marsh & Debra M. Eckert & Michael S. Kay & Anna Lyakisheva & Maria Pasic & Aiyush Bansal & Chaim Birnboim & Prabhat Jha & Yannick Galipeau & Marc-André Langlois & J, 2022. "Homogeneous surrogate virus neutralization assay to rapidly assess neutralization activity of anti-SARS-CoV-2 antibodies," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Jing Wang & Ramon Ocadiz-Ruiz & Matthew S. Hall & Grace G. Bushnell & Sophia M. Orbach & Joseph T. Decker & Ravi M. Raghani & Yining Zhang & Aaron H. Morris & Jacqueline S. Jeruss & Lonnie D. Shea, 2023. "A synthetic metastatic niche reveals antitumor neutrophils drive breast cancer metastatic dormancy in the lungs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    10. J. K. Wiencke & Annette M. Molinaro & Gayathri Warrier & Terri Rice & Jennifer Clarke & Jennie W. Taylor & Margaret Wrensch & Helen Hansen & Lucie McCoy & Emily Tang & Stan J. Tamaki & Courtney M. Tam, 2022. "DNA methylation as a pharmacodynamic marker of glucocorticoid response and glioma survival," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Vipul Bhatia & Nikhil V. Kamat & Tiffany E. Pariva & Li-Ting Wu & Annabelle Tsao & Koichi Sasaki & Huiyun Sun & Gerardo Javier & Sam Nutt & Ilsa Coleman & Lauren Hitchcock & Ailin Zhang & Dmytro Rudoy, 2023. "Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    12. Vincenzo Salemme & Mauro Vedelago & Alessandro Sarcinella & Federico Moietta & Alessio Piccolantonio & Enrico Moiso & Giorgia Centonze & Marta Manco & Andrea Guala & Alessia Lamolinara & Costanza Ange, 2023. "p140Cap inhibits β-Catenin in the breast cancer stem cell compartment instructing a protective anti-tumor immune response," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32371-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.