IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31772-9.html
   My bibliography  Save this article

Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration

Author

Listed:
  • Michael S. Balzer

    (University of Pennsylvania
    University of Pennsylvania)

  • Tomohito Doke

    (University of Pennsylvania
    University of Pennsylvania)

  • Ya-Wen Yang

    (University of Pennsylvania
    University of Pennsylvania)

  • Daniel L. Aldridge

    (University of Pennsylvania)

  • Hailong Hu

    (University of Pennsylvania
    University of Pennsylvania)

  • Hung Mai

    (University of Pennsylvania
    University of Pennsylvania)

  • Dhanunjay Mukhi

    (University of Pennsylvania
    University of Pennsylvania)

  • Ziyuan Ma

    (University of Pennsylvania
    University of Pennsylvania)

  • Rojesh Shrestha

    (University of Pennsylvania
    University of Pennsylvania)

  • Matthew B. Palmer

    (University of Pennsylvania)

  • Christopher A. Hunter

    (University of Pennsylvania)

  • Katalin Susztak

    (University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania)

Abstract

The kidney has tremendous capacity to repair after acute injury, however, pathways guiding adaptive and fibrotic repair are poorly understood. We developed a model of adaptive and fibrotic kidney regeneration by titrating ischemic injury dose. We performed detailed biochemical and histological analysis and profiled transcriptomic changes at bulk and single-cell level (> 110,000 cells) over time. Our analysis highlights kidney proximal tubule cells as key susceptible cells to injury. Adaptive proximal tubule repair correlated with fatty acid oxidation and oxidative phosphorylation. We identify a specific maladaptive/profibrotic proximal tubule cluster after long ischemia, which expresses proinflammatory and profibrotic cytokines and myeloid cell chemotactic factors. Druggability analysis highlights pyroptosis/ferroptosis as vulnerable pathways in these profibrotic cells. Pharmacological targeting of pyroptosis/ferroptosis in vivo pushed cells towards adaptive repair and ameliorates fibrosis. In summary, our single-cell analysis defines key differences in adaptive and fibrotic repair and identifies druggable pathways for pharmacological intervention to prevent kidney fibrosis.

Suggested Citation

  • Michael S. Balzer & Tomohito Doke & Ya-Wen Yang & Daniel L. Aldridge & Hailong Hu & Hung Mai & Dhanunjay Mukhi & Ziyuan Ma & Rojesh Shrestha & Matthew B. Palmer & Christopher A. Hunter & Katalin Suszt, 2022. "Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31772-9
    DOI: 10.1038/s41467-022-31772-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31772-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31772-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Junyue Cao & Malte Spielmann & Xiaojie Qiu & Xingfan Huang & Daniel M. Ibrahim & Andrew J. Hill & Fan Zhang & Stefan Mundlos & Lena Christiansen & Frank J. Steemers & Cole Trapnell & Jay Shendure, 2019. "The single-cell transcriptional landscape of mammalian organogenesis," Nature, Nature, vol. 566(7745), pages 496-502, February.
    2. Pietro E. Cippà & Jing Liu & Bo Sun & Sanjeev Kumar & Maarten Naesens & Andrew P. McMahon, 2019. "A late B lymphocyte action in dysfunctional tissue repair following kidney injury and transplantation," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Alexandre F. Aissa & Abul B. M. M. K. Islam & Majd M. Ariss & Cammille C. Go & Alexandra E. Rader & Ryan D. Conrardy & Alexa M. Gajda & Carlota Rubio-Perez & Klara Valyi-Nagy & Mary Pasquinelli & Lawr, 2021. "Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer," Nature Communications, Nature, vol. 12(1), pages 1-25, December.
    4. Gioele La Manno & Ruslan Soldatov & Amit Zeisel & Emelie Braun & Hannah Hochgerner & Viktor Petukhov & Katja Lidschreiber & Maria E. Kastriti & Peter Lönnerberg & Alessandro Furlan & Jean Fan & Lars E, 2018. "RNA velocity of single cells," Nature, Nature, vol. 560(7719), pages 494-498, August.
    5. Zhen Miao & Michael S. Balzer & Ziyuan Ma & Hongbo Liu & Junnan Wu & Rojesh Shrestha & Tamas Aranyi & Amy Kwan & Ayano Kondo & Marco Pontoglio & Junhyong Kim & Mingyao Li & Klaus H. Kaestner & Katalin, 2021. "Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    6. Hongxu Ding & Andrew Blair & Ying Yang & Joshua M. Stuart, 2019. "Biological process activity transformation of single cell gene expression for cross-species alignment," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    7. Roser Vento-Tormo & Mirjana Efremova & Rachel A. Botting & Margherita Y. Turco & Miquel Vento-Tormo & Kerstin B. Meyer & Jong-Eun Park & Emily Stephenson & Krzysztof Polański & Angela Goncalves & Lucy, 2018. "Single-cell reconstruction of the early maternal–fetal interface in humans," Nature, Nature, vol. 563(7731), pages 347-353, November.
    8. Xuran Wang & Jihwan Park & Katalin Susztak & Nancy R. Zhang & Mingyao Li, 2019. "Bulk tissue cell type deconvolution with multi-subject single-cell expression reference," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haojia Wu & Eryn E. Dixon & Qiao Xuanyuan & Juanru Guo & Yasuhiro Yoshimura & Chitnis Debashish & Anezka Niesnerova & Hao Xu & Morgane Rouault & Benjamin D. Humphreys, 2024. "High resolution spatial profiling of kidney injury and repair using RNA hybridization-based in situ sequencing," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Lingzhi Li & Ting Xiang & Jingjing Guo & Fan Guo & Yiting Wu & Han Feng & Jing Liu & Sibei Tao & Ping Fu & Liang Ma, 2024. "Inhibition of ACSS2-mediated histone crotonylation alleviates kidney fibrosis via IL-1β-dependent macrophage activation and tubular cell senescence," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Junyi Chen & Xiaoying Wang & Anjun Ma & Qi-En Wang & Bingqiang Liu & Lang Li & Dong Xu & Qin Ma, 2022. "Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Keyong Sun & Runda Xu & Fuhai Ma & Naixue Yang & Yang Li & Xiaofeng Sun & Peng Jin & Wenzhe Kang & Lemei Jia & Jianping Xiong & Haitao Hu & Yantao Tian & Xun Lan, 2022. "scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Qian-Yue Zhang & Xiao-Ping Ye & Zheng Zhou & Chen-Fang Zhu & Rui Li & Ya Fang & Rui-Jia Zhang & Lu Li & Wei Liu & Zheng Wang & Shi-Yang Song & Sang-Yu Lu & Shuang-Xia Zhao & Jian-Nan Lin & Huai-Dong S, 2022. "Lymphocyte infiltration and thyrocyte destruction are driven by stromal and immune cell components in Hashimoto’s thyroiditis," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Gaofei Li & Yicong Sun & Immanuel Kwok & Liting Yang & Wanying Wen & Peixian Huang & Mei Wu & Jing Li & Zhibin Huang & Zhaoyuan Liu & Shuai He & Wan Peng & Jin-Xin Bei & Florent Ginhoux & Lai Guan Ng , 2024. "Cebp1 and Cebpβ transcriptional axis controls eosinophilopoiesis in zebrafish," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Adele M. Alchahin & Shenglin Mei & Ioanna Tsea & Taghreed Hirz & Youmna Kfoury & Douglas Dahl & Chin-Lee Wu & Alexander O. Subtelny & Shulin Wu & David T. Scadden & John H. Shin & Philip J. Saylor & D, 2022. "A transcriptional metastatic signature predicts survival in clear cell renal cell carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Rong Li & Tianyuan Wang & Ryan M. Marquardt & John P. Lydon & San-Pin Wu & Francesco J. DeMayo, 2023. "TRIM28 modulates nuclear receptor signaling to regulate uterine function," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Gennady Gorin & John J. Vastola & Meichen Fang & Lior Pachter, 2022. "Interpretable and tractable models of transcriptional noise for the rational design of single-molecule quantification experiments," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Zhixin Li & Kathy Nga-Chu Lui & Sin-Ting Lau & Frank Pui-Ling Lai & Peng Li & Patrick Ho-Yu Chung & Kenneth Kak-Yuen Wong & Paul Kwong-Hing Tam & Maria-Mercedes Garica-Barcelo & Chi-Chung Hui & Pak Ch, 2023. "Transcriptomics of Hirschsprung disease patient-derived enteric neural crest cells reveals a role for oxidative phosphorylation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Z. L. Liu & X. Y. Meng & R. J. Bao & M. Y. Shen & J. J. Sun & W. D. Chen & F. Liu & Y. He, 2024. "Single cell deciphering of progression trajectories of the tumor ecosystem in head and neck cancer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Mattia Zaghi & Federica Banfi & Luca Massimino & Monica Volpin & Edoardo Bellini & Simone Brusco & Ivan Merelli & Cristiana Barone & Michela Bruni & Linda Bossini & Luigi Antonio Lamparelli & Laura Pi, 2023. "Balanced SET levels favor the correct enhancer repertoire during cell fate acquisition," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    12. María-Jesús Lobón-Iglesias & Mamy Andrianteranagna & Zhi-Yan Han & Céline Chauvin & Julien Masliah-Planchon & Valeria Manriquez & Arnault Tauziede-Espariat & Sandrina Turczynski & Rachida Bouarich-Bou, 2023. "Imaging and multi-omics datasets converge to define different neural progenitor origins for ATRT-SHH subgroups," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    13. Joachim Jonghe & Tomasz S. Kaminski & David B. Morse & Marcin Tabaka & Anna L. Ellermann & Timo N. Kohler & Gianluca Amadei & Charlotte E. Handford & Gregory M. Findlay & Magdalena Zernicka-Goetz & Sa, 2023. "spinDrop: a droplet microfluidic platform to maximise single-cell sequencing information content," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Chen-Rui Xia & Zhi-Jie Cao & Xin-Ming Tu & Ge Gao, 2023. "Spatial-linked alignment tool (SLAT) for aligning heterogenous slices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Jolene S. Ranek & Wayne Stallaert & J. Justin Milner & Margaret Redick & Samuel C. Wolff & Adriana S. Beltran & Natalie Stanley & Jeremy E. Purvis, 2024. "DELVE: feature selection for preserving biological trajectories in single-cell data," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    16. Christopher W. Murray & Jennifer J. Brady & Mingqi Han & Hongchen Cai & Min K. Tsai & Sarah E. Pierce & Ran Cheng & Janos Demeter & David M. Feldser & Peter K. Jackson & David B. Shackelford & Monte M, 2022. "LKB1 drives stasis and C/EBP-mediated reprogramming to an alveolar type II fate in lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Zhuo Ma & Xiaofei Zhang & Wen Zhong & Hongyan Yi & Xiaowei Chen & Yinsuo Zhao & Yanlin Ma & Eli Song & Tao Xu, 2023. "Deciphering early human pancreas development at the single-cell level," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Huanhuan Tan & Weixu Wang & Congjin Zhou & Yanfeng Wang & Shu Zhang & Pinglan Yang & Rui Guo & Wei Chen & Jinwen Zhang & Lan Ye & Yiqiang Cui & Ting Ni & Ke Zheng, 2023. "Single-cell RNA-seq uncovers dynamic processes orchestrated by RNA-binding protein DDX43 in chromatin remodeling during spermiogenesis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    19. Sivakamasundari Vijayakumar & Roberta Sala & Gugene Kang & Angela Chen & Michelle Ann Pablo & Abidemi Ismail Adebayo & Andrea Cipriano & Jonas L. Fowler & Danielle L. Gomes & Lay Teng Ang & Kyle M. Lo, 2023. "Monolayer platform to generate and purify primordial germ-like cells in vitro provides insights into human germline specification," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    20. Christoph Ziegenhain & Rickard Sandberg, 2021. "BAMboozle removes genetic variation from human sequence data for open data sharing," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31772-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.