IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61058-9.html
   My bibliography  Save this article

Normothermic human kidney preservation drives iron accumulation and ferroptosis

Author

Listed:
  • Marlon J. A. Haan

    (Leiden University Medical Center
    Leiden University Medical Center)

  • Marleen E. Jacobs

    (Leiden University Medical Center
    Leiden University Medical Center)

  • Annemarie M. A. Graaf

    (Leiden University Medical Center
    Leiden University Medical Center)

  • Roan H. Scheppingen

    (Leiden University Medical Center
    Leiden University Medical Center)

  • Rico J. E. Derks

    (Leiden University Medical Center)

  • Dorottya K. Vries

    (Leiden University Medical Center
    Leiden University Medical Center)

  • Jesper Kers

    (Leiden University Medical Center
    University of Amsterdam
    Leiden University Medical Center)

  • Ian P. J. Alwayn

    (Leiden University Medical Center
    Leiden University Medical Center)

  • Cees Kooten

    (Leiden University Medical Center
    Leiden University Medical Center)

  • Elena Sánchez-López

    (Leiden University Medical Center
    Leiden University Medical Center)

  • Martin Giera

    (Leiden University Medical Center
    Leiden University Medical Center)

  • Marten A. Engelse

    (Leiden University Medical Center
    Leiden University Medical Center)

  • Ton J. Rabelink

    (Leiden University Medical Center
    Leiden University Medical Center)

Abstract

Ex vivo normothermic machine perfusion has been proposed to protect deceased donor kidneys. However, its benefits remain ambiguous. We postulate that the use of red blood cells (RBCs) and associated secondary hemolysis may in fact cause renal injury, offsetting potential advantages. During 48-hour normothermic perfusion of seven human donor kidneys, we observed progressive hemolysis, leading to iron accumulation in perfusate and tissue. Untargeted lipidomic profiling revealed significant increases in oxidized phospholipid species in perfused kidneys, pointing towards iron-dependent cell death known as ferroptosis. Next, in twelve additional perfusions, we assessed strategies to mitigate hemolysis-driven injury. Dialysis-based free hemoglobin removal reduced lipid peroxidation, but a ferroptosis gene signature persisted. In contrast, cell-free perfusion at subnormothermia negated iron accumulation, the ferroptosis gene signature, phospholipid peroxidation, and acute kidney injury. Our findings highlight the pathological role of hemolysis and iron on the kidney, urging restraint in the clinical application of RBC-based kidney perfusion.

Suggested Citation

  • Marlon J. A. Haan & Marleen E. Jacobs & Annemarie M. A. Graaf & Roan H. Scheppingen & Rico J. E. Derks & Dorottya K. Vries & Jesper Kers & Ian P. J. Alwayn & Cees Kooten & Elena Sánchez-López & Martin, 2025. "Normothermic human kidney preservation drives iron accumulation and ferroptosis," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61058-9
    DOI: 10.1038/s41467-025-61058-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61058-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61058-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Andrijevic & Zvonimir Vrselja & Taras Lysyy & Shupei Zhang & Mario Skarica & Ana Spajic & David Dellal & Stephanie L. Thorn & Robert B. Duckrow & Shaojie Ma & Phan Q. Duy & Atagun U. Isiktas & D, 2022. "Cellular recovery after prolonged warm ischaemia of the whole body," Nature, Nature, vol. 608(7922), pages 405-412, August.
    2. David Nasralla & Constantin C. Coussios & Hynek Mergental & M. Zeeshan Akhtar & Andrew J. Butler & Carlo D. L. Ceresa & Virginia Chiocchia & Susan J. Dutton & Juan Carlos García-Valdecasas & Nigel Hea, 2018. "A randomized trial of normothermic preservation in liver transplantation," Nature, Nature, vol. 557(7703), pages 50-56, May.
    3. Ngee-Soon Lau & Mark Ly & Claude Dennis & Andrew Jacques & Marti Cabanes-Creus & Shamus Toomath & Joanna Huang & Nicole Mestrovic & Paul Yousif & Sumon Chanda & Chuanmin Wang & Leszek Lisowski & Ken L, 2023. "Long-term ex situ normothermic perfusion of human split livers for more than 1 week," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Michael S. Balzer & Tomohito Doke & Ya-Wen Yang & Daniel L. Aldridge & Hailong Hu & Hung Mai & Dhanunjay Mukhi & Ziyuan Ma & Rojesh Shrestha & Matthew B. Palmer & Christopher A. Hunter & Katalin Suszt, 2022. "Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umberto Cillo & Caterina Lonati & Alessandra Bertacco & Lucrezia Magnini & Michele Battistin & Lara Borsetto & Francesco Dazzi & David Al-Adra & Enrico Gringeri & Maria Laura Bacci & Andrea Schlegel &, 2025. "A proof-of-concept study in small and large animal models for coupling liver normothermic machine perfusion with mesenchymal stromal cell bioreactors," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. C. Albert & L. Bracaglia & A. Koide & J. DiRito & T. Lysyy & L. Harkins & C. Edwards & O. Richfield & J. Grundler & K. Zhou & E. Denbaum & G. Ketavarapu & T. Hattori & S. Perincheri & J. Langford & A., 2022. "Monobody adapter for functional antibody display on nanoparticles for adaptable targeted delivery applications," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Ngee-Soon Lau & Geoffrey McCaughan & Mark Ly & Ken Liu & Michael Crawford & Carlo Pulitano, 2024. "Long-term machine perfusion of human split livers: a new model for regenerative and translational research," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Haojia Wu & Eryn E. Dixon & Qiao Xuanyuan & Juanru Guo & Yasuhiro Yoshimura & Chitnis Debashish & Anezka Niesnerova & Hao Xu & Morgane Rouault & Benjamin D. Humphreys, 2024. "High resolution spatial profiling of kidney injury and repair using RNA hybridization-based in situ sequencing," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Nehaben A. Gujarati & Bismark O. Frimpong & Malaika Zaidi & Robert Bronstein & Monica P. Revelo & John D. Haley & Igor Kravets & Yiqing Guo & Sandeep K. Mallipattu, 2024. "Podocyte-specific KLF6 primes proximal tubule CaMK1D signaling to attenuate diabetic kidney disease," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Lingzhi Li & Ting Xiang & Jingjing Guo & Fan Guo & Yiting Wu & Han Feng & Jing Liu & Sibei Tao & Ping Fu & Liang Ma, 2024. "Inhibition of ACSS2-mediated histone crotonylation alleviates kidney fibrosis via IL-1β-dependent macrophage activation and tubular cell senescence," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Miguel Rodriguez de los Santos & Brian H. Kopell & Ariela Buxbaum Grice & Gauri Ganesh & Andy Yang & Pardis Amini & Lora E. Liharska & Eric Vornholt & John F. Fullard & Pengfei Dong & Eric Park & Sara, 2024. "Divergent landscapes of A-to-I editing in postmortem and living human brain," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. T. Hautz & S. Salcher & M. Fodor & G. Sturm & S. Ebner & A. Mair & M. Trebo & G. Untergasser & S. Sopper & B. Cardini & A. Martowicz & J. Hofmann & S. Daum & M. Kalb & T. Resch & F. Krendl & A. Weisse, 2023. "Immune cell dynamics deconvoluted by single-cell RNA sequencing in normothermic machine perfusion of the liver," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Marlon J. A. Haan & Marleen E. Jacobs & Franca M. R. Witjas & Annemarie M. A. Graaf & Elena Sánchez-López & Sarantos Kostidis & Martin Giera & Francisco Calderon Novoa & Tunpang Chu & Markus Selzner &, 2024. "A cell-free nutrient-supplemented perfusate allows four-day ex vivo metabolic preservation of human kidneys," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Shannon N. Tessier & Reinier J. de Vries & Casie A. Pendexter & Stephanie E. J. Cronin & Sinan Ozer & Ehab O. A. Hafiz & Siavash Raigani & Joao Paulo Oliveira-Costa & Benjamin T. Wilks & Manuela Loper, 2022. "Partial freezing of rat livers extends preservation time by 5-fold," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Adam M. Thorne & Justina C. Wolters & Bianca Lascaris & Silke B. Bodewes & Veerle A. Lantinga & Otto B. Leeuwen & Iris E. M. Jong & Kirill Ustyantsev & Eugene Berezikov & Ton Lisman & Folkert Kuipers , 2023. "Bile proteome reveals biliary regeneration during normothermic preservation of human donor livers," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Michal Polonsky & Louisa M. S. Gerhardt & Jina Yun & Kari Koppitch & Katsuya Lex Colón & Henry Amrhein & Barbara Wold & Shiwei Zheng & Guo-Cheng Yuan & Matt Thomson & Long Cai & Andrew P. McMahon, 2024. "Spatial transcriptomics defines injury specific microenvironments and cellular interactions in kidney regeneration and disease," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Zonghu Han & Joseph Sushil Rao & Lakshya Gangwar & Bat-Erdene Namsrai & Jacqueline L. Pasek-Allen & Michael L. Etheridge & Susan M. Wolf & Timothy L. Pruett & John C. Bischof & Erik B. Finger, 2023. "Vitrification and nanowarming enable long-term organ cryopreservation and life-sustaining kidney transplantation in a rat model," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61058-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.