IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31596-7.html
   My bibliography  Save this article

Mouse pulmonary interstitial macrophages mediate the pro-tumorigenic effects of IL-9

Author

Listed:
  • Yongyao Fu

    (Indiana University School of Medicine)

  • Abigail Pajulas

    (Indiana University School of Medicine)

  • Jocelyn Wang

    (Indiana University School of Medicine)

  • Baohua Zhou

    (Indiana University School of Medicine)

  • Anthony Cannon

    (Indiana University School of Medicine)

  • Cherry Cheuk Lam Cheung

    (Indiana University School of Medicine)

  • Jilu Zhang

    (Indiana University School of Medicine)

  • Huaxin Zhou

    (Indiana University School of Medicine)

  • Amanda Jo Fisher

    (Indiana University School of Medicine)

  • David T. Omstead

    (University of Notre Dame)

  • Sabrina Khan

    (University of Notre Dame)

  • Lei Han

    (Indiana University School of Medicine)

  • Jean-Christophe Renauld

    (Université Catholique de Louvain)

  • Sophie Paczesny

    (Medical University of South Carolina)

  • Hongyu Gao

    (Indiana University School of Medicine)

  • Yunlong Liu

    (Indiana University School of Medicine)

  • Lei Yang

    (Indiana University School of Medicine)

  • Robert M. Tighe

    (Duke University Medical Center)

  • Paula Licona-Limón

    (Universidad Nacional Autónoma de México)

  • Richard A. Flavell

    (Yale University School of Medicine)

  • Shogo Takatsuka

    (Tokyo University of Science)

  • Daisuke Kitamura

    (Tokyo University of Science)

  • Jie Sun

    (Mayo Clinic)

  • Basar Bilgicer

    (University of Notre Dame)

  • Catherine R. Sears

    (Indiana University School of Medicine)

  • Kai Yang

    (Indiana University School of Medicine)

  • Mark H. Kaplan

    (Indiana University School of Medicine)

Abstract

Although IL-9 has potent anti-tumor activity in adoptive cell transfer therapy, some models suggest that it can promote tumor growth. Here, we show that IL-9 signaling is associated with poor outcomes in patients with various forms of lung cancer, and is required for lung tumor growth in multiple mouse models. CD4+ T cell-derived IL-9 promotes the expansion of both CD11c+ and CD11c− interstitial macrophage populations in lung tumor models. Mechanistically, the IL-9/macrophage axis requires arginase 1 (Arg1) to mediate tumor growth. Indeed, adoptive transfer of Arg1+ but not Arg1- lung macrophages to Il9r−/− mice promotes tumor growth. Moreover, targeting IL-9 signaling using macrophage-specific nanoparticles restricts lung tumor growth in mice. Lastly, elevated expression of IL-9R and Arg1 in tumor lesions is associated with poor prognosis in lung cancer patients. Thus, our study suggests the IL-9/macrophage/Arg1 axis is a potential therapeutic target for lung cancer therapy.

Suggested Citation

  • Yongyao Fu & Abigail Pajulas & Jocelyn Wang & Baohua Zhou & Anthony Cannon & Cherry Cheuk Lam Cheung & Jilu Zhang & Huaxin Zhou & Amanda Jo Fisher & David T. Omstead & Sabrina Khan & Lei Han & Jean-Ch, 2022. "Mouse pulmonary interstitial macrophages mediate the pro-tumorigenic effects of IL-9," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31596-7
    DOI: 10.1038/s41467-022-31596-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31596-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31596-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yongyao Fu & Jocelyn Wang & Gayathri Panangipalli & Benjamin J. Ulrich & Byunghee Koh & Chengxian Xu & Rakshin Kharwadkar & Xiaona Chu & Yue Wang & Hongyu Gao & Wenting Wu & Jie Sun & Robert S. Tepper, 2020. "STAT5 promotes accessibility and is required for BATF-mediated plasticity at the Il9 locus," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    2. Balázs Győrffy & Pawel Surowiak & Jan Budczies & András Lánczky, 2013. "Online Survival Analysis Software to Assess the Prognostic Value of Biomarkers Using Transcriptomic Data in Non-Small-Cell Lung Cancer," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    3. Tiffany A. Reese & Hong-Erh Liang & Andrew M. Tager & Andrew D. Luster & Nico Van Rooijen & David Voehringer & Richard M. Locksley, 2007. "Chitin induces accumulation in tissue of innate immune cells associated with allergy," Nature, Nature, vol. 447(7140), pages 92-96, May.
    4. María Casanova-Acebes & Erica Dalla & Andrew M. Leader & Jessica LeBerichel & Jovan Nikolic & Blanca M. Morales & Markus Brown & Christie Chang & Leanna Troncoso & Steven T. Chen & Ana Sastre-Perona &, 2021. "Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells," Nature, Nature, vol. 595(7868), pages 578-584, July.
    5. Lintao Liu & Enguang Bi & Xingzhe Ma & Wei Xiong & Jianfei Qian & Lingqun Ye & Pan Su & Qiang Wang & Liuling Xiao & Maojie Yang & Yong Lu & Qing Yi, 2020. "Enhanced CAR-T activity against established tumors by polarizing human T cells to secrete interleukin-9," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul A Stewart & Katja Parapatics & Eric A Welsh & André C Müller & Haoyun Cao & Bin Fang & John M Koomen & Steven A Eschrich & Keiryn L Bennett & Eric B Haura, 2015. "A Pilot Proteogenomic Study with Data Integration Identifies MCT1 and GLUT1 as Prognostic Markers in Lung Adenocarcinoma," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-18, November.
    2. Jiří Mlček & Anna Adámková & Martin Adámek & Marie Borkovcová & Martina Bednářová & Lenka Kouřimská & Veronika Hlobilová, 2021. "Selected aspects of edible insect rearing and consumption - A review," Czech Journal of Food Sciences, Czech Academy of Agricultural Sciences, vol. 39(3), pages 149-159.
    3. Elena Spina & Julia Simundza & Angela Incassati & Anupama Chandramouli & Matthias C. Kugler & Ziyan Lin & Alireza Khodadadi-Jamayran & Christine J. Watson & Pamela Cowin, 2022. "Gpr125 is a unifying hallmark of multiple mammary progenitors coupled to tumor latency," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Camille Cohen & Rana Mhaidly & Hugo Croizer & Yann Kieffer & Renaud Leclere & Anne Vincent-Salomon & Catherine Robley & Dany Anglicheau & Marion Rabant & Aurélie Sannier & Marc-Olivier Timsit & Sean E, 2024. "WNT-dependent interaction between inflammatory fibroblasts and FOLR2+ macrophages promotes fibrosis in chronic kidney disease," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    5. Daniel Haensel & Bence Daniel & Sadhana Gaddam & Cory Pan & Tania Fabo & Jeremy Bjelajac & Anna R. Jussila & Fernanda Gonzalez & Nancy Yanzhe Li & Yun Chen & JinChao Hou & Tiffany Patel & Sumaira Aasi, 2023. "Skin basal cell carcinomas assemble a pro-tumorigenic spatially organized and self-propagating Trem2+ myeloid niche," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    6. Irfete S. Fetahu & Wolfgang Esser-Skala & Rohit Dnyansagar & Samuel Sindelar & Fikret Rifatbegovic & Andrea Bileck & Lukas Skos & Eva Bozsaky & Daria Lazic & Lisa Shaw & Marcus Tötzl & Dora Tarlungean, 2023. "Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Zhen Lu & Jinyun Chen & Pengfei Yu & Matthew J. Atherton & Jun Gui & Vivek S. Tomar & Justin D. Middleton & Neil T. Sullivan & Sunil Singhal & Subin S. George & Ashley G. Woolfork & Aalim M. Weljie & , 2022. "Tumor factors stimulate lysosomal degradation of tumor antigens and undermine their cross-presentation in lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    8. Ming Yi & Ruoqing Zhu & Robert M Stephens, 2018. "GradientScanSurv—An exhaustive association test method for gene expression data with censored survival outcome," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-28, December.
    9. Bo Yuan & Jingyuan Xiong & Chaoxiong Zhang & Yuqin Yao & Chaoxiong Zhang & Ting An & Jie Liu, 2020. "Prognostic Roles of APLNR Expression in Non-Small Cell Lung Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 27(5), pages 21089-21098, May.
    10. Sang-A Park & Yun-Ji Lim & Wai Lim Ku & Dunfang Zhang & Kairong Cui & Liu-Ya Tang & Cheryl Chia & Peter Zanvit & Zuojia Chen & Wenwen Jin & Dandan Wang & Junji Xu & Ousheng Liu & Fu Wang & Alexander C, 2022. "Opposing functions of circadian protein DBP and atypical E2F family E2F8 in anti-tumor Th9 cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Hang Liu & Xunli Lu & Mengfei Li & Zhiqin Lun & Xia Yan & Changfa Yin & Guixin Yuan & Xingbin Wang & Ning Liu & Di Liu & Mian Wu & Ziluolong Luo & Yan Zhang & Vijai Bhadauria & Jun Yang & Nicholas J. , 2023. "Plant immunity suppression by an exo-β-1,3-glucanase and an elongation factor 1α of the rice blast fungus," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Seiji Taniguchi & Takahiro Matsui & Kenji Kimura & Soichiro Funaki & Yu Miyamoto & Yutaka Uchida & Takao Sudo & Junichi Kikuta & Tetsuya Hara & Daisuke Motooka & Yu-Chen Liu & Daisuke Okuzaki & Eiichi, 2023. "In vivo induction of activin A-producing alveolar macrophages supports the progression of lung cell carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Lijuan Zhang & Kai Zhang & Jieyou Zhang & Jinrong Zhu & Qing Xi & Huafeng Wang & Zimu Zhang & Yingnan Cheng & Guangze Yang & Hongkun Liu & Xiangdong Guo & Dongmei Zhou & Zhenyi Xue & Yan Li & Qi Zhang, 2021. "Loss of fragile site-associated tumor suppressor promotes antitumor immunity via macrophage polarization," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    14. Eui Jung Moon & Stephano S. Mello & Caiyun G. Li & Jen-Tsan Chi & Kaushik Thakkar & Jacob G. Kirkland & Edward L. Lagory & Ik Jae Lee & Anh N. Diep & Yu Miao & Marjan Rafat & Marta Vilalta & Laura Cas, 2021. "The HIF target MAFF promotes tumor invasion and metastasis through IL11 and STAT3 signaling," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    15. Ming Yang & Yunjo Soh & Seok-Mo Heo, 2022. "Characterization of Acidic Mammalian Chitinase as a Novel Biomarker for Severe Periodontitis (Stage III/IV): A Pilot Study," IJERPH, MDPI, vol. 19(7), pages 1-9, March.
    16. Nicole L. Bertschi & Oliver Steck & Fabian Luther & Cecilia Bazzini & Leonhard Meyenn & Stefanie Schärli & Angela Vallone & Andrea Felser & Irene Keller & Olivier Friedli & Stefan Freigang & Nadja Beg, 2023. "PPAR-γ regulates the effector function of human T helper 9 cells by promoting glycolysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31596-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.