IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31398-x.html
   My bibliography  Save this article

Confinement anisotropy drives polar organization of two DNA molecules interacting in a nanoscale cavity

Author

Listed:
  • Zezhou Liu

    (McGill University)

  • Xavier Capaldi

    (McGill University)

  • Lili Zeng

    (McGill University)

  • Yuning Zhang

    (McGill University
    BGI-Shenzhen)

  • Rodrigo Reyes-Lamothe

    (McGill University)

  • Walter Reisner

    (McGill University)

Abstract

There is growing appreciation for the role phase transition based phenomena play in biological systems. In particular, self-avoiding polymer chains are predicted to undergo a unique confinement dependent demixing transition as the anisotropy of the confined space is increased. This phenomenon may be relevant for understanding how interactions between multiple dsDNA molecules can induce self-organized structure in prokaryotes. While recent in vivo experiments and Monte Carlo simulations have delivered essential insights into this phenomenon and its relation to bacteria, there are fundamental questions remaining concerning how segregated polymer states arise, the role of confinement anisotropy and the nature of the dynamics in the segregated states. To address these questions, we introduce an artificial nanofluidic model to quantify the interactions of multiple dsDNA molecules in cavities with controlled anisotropy. We find that two dsDNA molecules of equal size confined in an elliptical cavity will spontaneously demix and orient along the cavity poles as cavity eccentricity is increased; the two chains will then swap pole positions with a frequency that decreases with increasing cavity eccentricity. In addition, we explore a system consisting of a large dsDNA molecule and a plasmid molecule. We find that the plasmid is excluded from the larger molecule and will exhibit a preference for the ellipse poles, giving rise to a non-uniform spatial distribution in the cavity that may help explain the non-uniform plasmid distribution observed during in vivo imaging of high-copy number plasmids in bacteria.

Suggested Citation

  • Zezhou Liu & Xavier Capaldi & Lili Zeng & Yuning Zhang & Rodrigo Reyes-Lamothe & Walter Reisner, 2022. "Confinement anisotropy drives polar organization of two DNA molecules interacting in a nanoscale cavity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31398-x
    DOI: 10.1038/s41467-022-31398-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31398-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31398-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christian L. Vestergaard & Morten Bo Mikkelsen & Walter Reisner & Anders Kristensen & Henrik Flyvbjerg, 2016. "Transition state theory demonstrated at the micron scale with out-of-equilibrium transport in a confined environment," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    2. Anne-Sophie Coquel & Jean-Pascal Jacob & Mael Primet & Alice Demarez & Mariella Dimiccoli & Thomas Julou & Lionel Moisan & Ariel B Lindner & Hugues Berry, 2013. "Localization of Protein Aggregation in Escherichia coli Is Governed by Diffusion and Nucleoid Macromolecular Crowding Effect," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koleva, Kameliya Z. & Hellweger, Ferdi L., 2015. "From protein damage to cell aging to population fitness in E. coli: Insights from a multi-level agent-based model," Ecological Modelling, Elsevier, vol. 301(C), pages 62-71.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31398-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.