IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30493-3.html
   My bibliography  Save this article

Embryo-scale epithelial buckling forms a propagating furrow that initiates gastrulation

Author

Listed:
  • Julien Fierling

    (LIPhy)

  • Alphy John

    (iBV)

  • Barthélémy Delorme

    (iBV)

  • Alexandre Torzynski

    (LIPhy)

  • Guy B. Blanchard

    (University of Cambridge)

  • Claire M. Lye

    (University of Cambridge)

  • Anna Popkova

    (iBV)

  • Grégoire Malandain

    (CNRS, I3S)

  • Bénédicte Sanson

    (University of Cambridge)

  • Jocelyn Étienne

    (LIPhy)

  • Philippe Marmottant

    (LIPhy)

  • Catherine Quilliet

    (LIPhy)

  • Matteo Rauzi

    (iBV)

Abstract

Cell apical constriction driven by actomyosin contraction forces is a conserved mechanism during tissue folding in embryo development. While much is now understood of the molecular mechanism responsible for apical constriction and of the tissue-scale integration of the ensuing in-plane deformations, it is still not clear if apical actomyosin contraction forces are necessary or sufficient per se to drive tissue folding. To tackle this question, we use the Drosophila embryo model system that forms a furrow on the ventral side, initiating mesoderm internalization. Past computational models support the idea that cell apical contraction forces may not be sufficient and that active or passive cell apico-basal forces may be necessary to drive cell wedging leading to tissue furrowing. By using 3D computational modelling and in toto embryo image analysis and manipulation, we now challenge this idea and show that embryo-scale force balance at the tissue surface, rather than cell-autonomous shape changes, is necessary and sufficient to drive a buckling of the epithelial surface forming a furrow which propagates and initiates embryo gastrulation.

Suggested Citation

  • Julien Fierling & Alphy John & Barthélémy Delorme & Alexandre Torzynski & Guy B. Blanchard & Claire M. Lye & Anna Popkova & Grégoire Malandain & Bénédicte Sanson & Jocelyn Étienne & Philippe Marmottan, 2022. "Embryo-scale epithelial buckling forms a propagating furrow that initiates gastrulation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30493-3
    DOI: 10.1038/s41467-022-30493-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30493-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30493-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anaïs Bailles & Claudio Collinet & Jean-Marc Philippe & Pierre-François Lenne & Edwin Munro & Thomas Lecuit, 2019. "Genetic induction and mechanochemical propagation of a morphogenetic wave," Nature, Nature, vol. 572(7770), pages 467-473, August.
    2. Bing He & Konstantin Doubrovinski & Oleg Polyakov & Eric Wieschaus, 2014. "Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation," Nature, Nature, vol. 508(7496), pages 392-396, April.
    3. Emiliano Izquierdo & Theresa Quinkler & Stefano De Renzis, 2018. "Guided morphogenesis through optogenetic activation of Rho signalling during early Drosophila embryogenesis," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    4. Matthieu Cavey & Matteo Rauzi & Pierre-François Lenne & Thomas Lecuit, 2008. "A two-tiered mechanism for stabilization and immobilization of E-cadherin," Nature, Nature, vol. 453(7196), pages 751-756, June.
    5. Mélanie Gracia & Sophie Theis & Amsha Proag & Guillaume Gay & Corinne Benassayag & Magali Suzanne, 2019. "Mechanical impact of epithelial−mesenchymal transition on epithelial morphogenesis in Drosophila," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    6. Matteo Rauzi & Uros Krzic & Timothy E. Saunders & Matej Krajnc & Primož Ziherl & Lars Hufnagel & Maria Leptin, 2015. "Embryo-scale tissue mechanics during Drosophila gastrulation movements," Nature Communications, Nature, vol. 6(1), pages 1-12, December.
    7. Soline Chanet & Callie J. Miller & Eeshit Dhaval Vaishnav & Bard Ermentrout & Lance A. Davidson & Adam C. Martin, 2017. "Actomyosin meshwork mechanosensing enables tissue shape to orient cell force," Nature Communications, Nature, vol. 8(1), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miho Matsuda & Jan Rozman & Sassan Ostvar & Karen E. Kasza & Sergei Y. Sokol, 2023. "Mechanical control of neural plate folding by apical domain alteration," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannah J. Gustafson & Nikolas Claussen & Stefano Renzis & Sebastian J. Streichan, 2022. "Patterned mechanical feedback establishes a global myosin gradient," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Aurélien Villedieu & Lale Alpar & Isabelle Gaugué & Amina Joudat & François Graner & Floris Bosveld & Yohanns Bellaïche, 2023. "Homeotic compartment curvature and tension control spatiotemporal folding dynamics," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Kei Yamamoto & Haruko Miura & Motohiko Ishida & Yusuke Mii & Noriyuki Kinoshita & Shinji Takada & Naoto Ueno & Satoshi Sawai & Yohei Kondo & Kazuhiro Aoki, 2021. "Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Sijia Zhou & Peng Li & Jiaying Liu & Juan Liao & Hao Li & Lin Chen & Zhihua Li & Qiongyu Guo & Karine Belguise & Bin Yi & Xiaobo Wang, 2022. "Two Rac1 pools integrate the direction and coordination of collective cell migration," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Japinder Nijjer & Changhao Li & Qiuting Zhang & Haoran Lu & Sulin Zhang & Jing Yan, 2021. "Mechanical forces drive a reorientation cascade leading to biofilm self-patterning," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Guillermo Martínez-Ara & Núria Taberner & Mami Takayama & Elissavet Sandaltzopoulou & Casandra E. Villava & Miquel Bosch-Padrós & Nozomu Takata & Xavier Trepat & Mototsugu Eiraku & Miki Ebisuya, 2022. "Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Christophe Royer & Elizabeth Sandham & Elizabeth Slee & Falk Schneider & Christoffer B. Lagerholm & Jonathan Godwin & Nisha Veits & Holly Hathrell & Felix Zhou & Karolis Leonavicius & Jemma Garratt & , 2022. "ASPP2 maintains the integrity of mechanically stressed pseudostratified epithelia during morphogenesis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Mika Sakurai-Yageta & Tomoko Maruyama & Takashi Suzuki & Kazuhisa Ichikawa & Yoshinori Murakami, 2015. "Dynamic Regulation of a Cell Adhesion Protein Complex Including CADM1 by Combinatorial Analysis of FRAP with Exponential Curve-Fitting," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    9. Stefan Harmansa & Alexander Erlich & Christophe Eloy & Giuseppe Zurlo & Thomas Lecuit, 2023. "Growth anisotropy of the extracellular matrix shapes a developing organ," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Julia Eckert & Benoît Ladoux & René-Marc Mège & Luca Giomi & Thomas Schmidt, 2023. "Hexanematic crossover in epithelial monolayers depends on cell adhesion and cell density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Miho Matsuda & Jan Rozman & Sassan Ostvar & Karen E. Kasza & Sergei Y. Sokol, 2023. "Mechanical control of neural plate folding by apical domain alteration," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Kazunori Sunadome & Alek G. Erickson & Delf Kah & Ben Fabry & Csaba Adori & Polina Kameneva & Louis Faure & Shigeaki Kanatani & Marketa Kaucka & Ivar Dehnisch Ellström & Marketa Tesarova & Tomas Zikmu, 2023. "Directionality of developing skeletal muscles is set by mechanical forces," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    13. Ariadna Marín-Llauradó & Sohan Kale & Adam Ouzeri & Tom Golde & Raimon Sunyer & Alejandro Torres-Sánchez & Ernest Latorre & Manuel Gómez-González & Pere Roca-Cusachs & Marino Arroyo & Xavier Trepat, 2023. "Mapping mechanical stress in curved epithelia of designed size and shape," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Özge Özgüç & Ludmilla de Plater & Varun Kapoor & Anna Francesca Tortorelli & Andrew G Clark & Jean-Léon Maître, 2022. "Cortical softening elicits zygotic contractility during mouse preimplantation development," PLOS Biology, Public Library of Science, vol. 20(3), pages 1-23, March.
    15. Shun Li & Zong-Yuan Liu & Hao Li & Sijia Zhou & Jiaying Liu & Ningwei Sun & Kai-Fu Yang & Vanessa Dougados & Thomas Mangeat & Karine Belguise & Xi-Qiao Feng & Yiyao Liu & Xiaobo Wang, 2024. "Basal actomyosin pulses expand epithelium coordinating cell flattening and tissue elongation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    16. Ana Sousa-Ortega & Javier Vázquez-Marín & Estefanía Sanabria-Reinoso & Jorge Corbacho & Rocío Polvillo & Alejandro Campoy-López & Lorena Buono & Felix Loosli & María Almuedo-Castillo & Juan R. Martíne, 2023. "A Yap-dependent mechanoregulatory program sustains cell migration for embryo axis assembly," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30493-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.