IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30466-6.html
   My bibliography  Save this article

Neuronal hyperexcitability drives central and peripheral nervous system tumor progression in models of neurofibromatosis-1

Author

Listed:
  • Corina Anastasaki

    (Washington University School of Medicine)

  • Juan Mo

    (University of Texas, Southwestern)

  • Ji-Kang Chen

    (Washington University School of Medicine)

  • Jit Chatterjee

    (Washington University School of Medicine)

  • Yuan Pan

    (Stanford University)

  • Suzanne M. Scheaffer

    (Washington University School of Medicine)

  • Olivia Cobb

    (Washington University School of Medicine)

  • Michelle Monje

    (Stanford University
    Stanford University)

  • Lu Q. Le

    (University of Texas, Southwestern)

  • David H. Gutmann

    (Washington University School of Medicine)

Abstract

Neuronal activity is emerging as a driver of central and peripheral nervous system cancers. Here, we examined neuronal physiology in mouse models of the tumor predisposition syndrome Neurofibromatosis-1 (NF1), with different propensities to develop nervous system cancers. We show that central and peripheral nervous system neurons from mice with tumor-causing Nf1 gene mutations exhibit hyperexcitability and increased secretion of activity-dependent tumor-promoting paracrine factors. We discovered a neurofibroma mitogen (COL1A2) produced by peripheral neurons in an activity-regulated manner, which increases NF1-deficient Schwann cell proliferation, establishing that neurofibromas are regulated by neuronal activity. In contrast, mice with the Arg1809Cys Nf1 mutation, found in NF1 patients lacking neurofibromas or optic gliomas, do not exhibit neuronal hyperexcitability or develop these NF1-associated tumors. The hyperexcitability of tumor-prone Nf1-mutant neurons results from reduced NF1-regulated hyperpolarization-activated cyclic nucleotide-gated (HCN) channel function, such that neuronal excitability, activity-regulated paracrine factor production, and tumor progression are attenuated by HCN channel activation. Collectively, these findings reveal that NF1 mutations act at the level of neurons to modify tumor predisposition by increasing neuronal excitability and activity-regulated paracrine factor production.

Suggested Citation

  • Corina Anastasaki & Juan Mo & Ji-Kang Chen & Jit Chatterjee & Yuan Pan & Suzanne M. Scheaffer & Olivia Cobb & Michelle Monje & Lu Q. Le & David H. Gutmann, 2022. "Neuronal hyperexcitability drives central and peripheral nervous system tumor progression in models of neurofibromatosis-1," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30466-6
    DOI: 10.1038/s41467-022-30466-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30466-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30466-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Pan & Jared D. Hysinger & Tara Barron & Nicki F. Schindler & Olivia Cobb & Xiaofan Guo & Belgin Yalçın & Corina Anastasaki & Sara B. Mulinyawe & Anitha Ponnuswami & Suzanne Scheaffer & Yu Ma & Ku, 2021. "NF1 mutation drives neuronal activity-dependent initiation of optic glioma," Nature, Nature, vol. 594(7862), pages 277-282, June.
    2. Xiaofan Guo & Yuan Pan & Min Xiong & Shilpa Sanapala & Corina Anastasaki & Olivia Cobb & Sonika Dahiya & David H. Gutmann, 2020. "Midkine activation of CD8+ T cells establishes a neuron–immune–cancer axis responsible for low-grade glioma growth," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    3. Varun Venkataramani & Dimitar Ivanov Tanev & Christopher Strahle & Alexander Studier-Fischer & Laura Fankhauser & Tobias Kessler & Christoph Körber & Markus Kardorff & Miriam Ratliff & Ruifan Xie & He, 2019. "Glutamatergic synaptic input to glioma cells drives brain tumour progression," Nature, Nature, vol. 573(7775), pages 532-538, September.
    4. Kwanha Yu & Chia-Ching John Lin & Asante Hatcher & Brittney Lozzi & Kathleen Kong & Emmet Huang-Hobbs & Yi-Ting Cheng & Vivek B. Beechar & Wenyi Zhu & Yiqun Zhang & Fengju Chen & Gordon B. Mills & Car, 2020. "PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis," Nature, Nature, vol. 578(7793), pages 166-171, February.
    5. Humsa S. Venkatesh & Wade Morishita & Anna C. Geraghty & Dana Silverbush & Shawn M. Gillespie & Marlene Arzt & Lydia T. Tam & Cedric Espenel & Anitha Ponnuswami & Lijun Ni & Pamelyn J. Woo & Kathryn R, 2019. "Electrical and synaptic integration of glioma into neural circuits," Nature, Nature, vol. 573(7775), pages 539-545, September.
    6. Humsa S. Venkatesh & Lydia T. Tam & Pamelyn J. Woo & James Lennon & Surya Nagaraja & Shawn M. Gillespie & Jing Ni & Damien Y. Duveau & Patrick J. Morris & Jean J. Zhao & Craig J. Thomas & Michelle Mon, 2017. "Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma," Nature, Nature, vol. 549(7673), pages 533-537, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaitali Chakraborty & Itzel Nissen & Craig A. Vincent & Anna-Carin Hägglund & Andreas Hörnblad & Silvia Remeseiro, 2023. "Rewiring of the promoter-enhancer interactome and regulatory landscape in glioblastoma orchestrates gene expression underlying neurogliomal synaptic communication," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Yanming Ren & Zongyao Huang & Lingling Zhou & Peng Xiao & Junwei Song & Ping He & Chuanxing Xie & Ran Zhou & Menghan Li & Xiangqun Dong & Qing Mao & Chao You & Jianguo Xu & Yanhui Liu & Zhigang Lan & , 2023. "Spatial transcriptomics reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. William H. Tomaszewski & Jessica Waibl-Polania & Molly Chakraborty & Jonathan Perera & Jeremy Ratiu & Alexandra Miggelbrink & Donald P. McDonnell & Mustafa Khasraw & David M. Ashley & Peter E. Fecci &, 2022. "Neuronal CaMKK2 promotes immunosuppression and checkpoint blockade resistance in glioblastoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Ling Hai & Dirk C. Hoffmann & Robin J. Wagener & Daniel D. Azorin & David Hausmann & Ruifan Xie & Magnus-Carsten Huppertz & Julien Hiblot & Philipp Sievers & Sophie Heuer & Jakob Ito & Gina Cebulla & , 2024. "A clinically applicable connectivity signature for glioblastoma includes the tumor network driver CHI3L1," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    5. Yuanning Zheng & Francisco Carrillo-Perez & Marija Pizurica & Dieter Henrik Heiland & Olivier Gevaert, 2023. "Spatial cellular architecture predicts prognosis in glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Romain Sigaud & Thomas K. Albert & Caroline Hess & Thomas Hielscher & Nadine Winkler & Daniela Kocher & Carolin Walter & Daniel Münter & Florian Selt & Diren Usta & Jonas Ecker & Angela Brentrup & Mar, 2023. "MAPK inhibitor sensitivity scores predict sensitivity driven by the immune infiltration in pediatric low-grade gliomas," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    7. Alexander Popov & Nadezda Brazhe & Kseniia Morozova & Konstantin Yashin & Maxim Bychkov & Olga Nosova & Oksana Sutyagina & Alexey Brazhe & Evgenia Parshina & Li Li & Igor Medyanik & Dmitry E. Korzhevs, 2023. "Mitochondrial malfunction and atrophy of astrocytes in the aged human cerebral cortex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Melanie Schoof & Shweta Godbole & Thomas K. Albert & Matthias Dottermusch & Carolin Walter & Annika Ballast & Nan Qin & Marlena Baca Olivera & Carolin Göbel & Sina Neyazi & Dörthe Holdhof & Catena Kre, 2023. "Mouse models of pediatric high-grade gliomas with MYCN amplification reveal intratumoral heterogeneity and lineage signatures," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Jit Chatterjee & Shilpa Sanapala & Olivia Cobb & Alice Bewley & Andrea K. Goldstein & Elizabeth Cordell & Xia Ge & Joel R. Garbow & Michael J. Holtzman & David H. Gutmann, 2021. "Asthma reduces glioma formation by T cell decorin-mediated inhibition of microglia," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30466-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.